भारतीय गणित शिक्षक द्वारा मैराथन गणित कक्षा

Jul 15, 2024

भारतीय गणित शिक्षक द्वारा मैराथन गणित कक्षा

परिचय

  • शाम का गणित का सत्र शुरू हुआ।
  • छात्रों से दोस्ताना संवाद: मानव, रिया, दक्ष, ऋषभ आदि का अभिवादन।
  • कुछ देरी से शुरू हुआ: कक्षा के प्रश्नों के चित्र तैयार कर रहे थे।
  • छात्रों को जोश पूर्ण माहौल में शामिल किया गया।

सर्कल और उसकी विशेषताएँ

कक्षा की योजना

  • कक्षा 10वीं का सर्कल्स अध्याय समापन की योजना में है।
  • मुख्य अवधारणाएँ जो परीक्षा के लिए महत्वपूर्ण हैं, उन पर ध्यान केंद्रित किया जाएगा।

सर्कल की मूल बातें

  • सर्कल की परिभाषा और गुण: सेंटर (O) से सर्कल के बाउंड्री तक की दूरी को रेडियस (r) कहा जाता है।

महत्वपूर्ण प्रमेय

  1. थ्योरम 1: सर्कल के सेंटर से कॉर्ड पर गिराई गई लंब सिरे कॉर्ड को दो बराबर भागों में विभाजित करती है। (If OP ⟂ AB, then AP = PB)
    • इसका कन्वर्स भी सत्य है।
  2. थ्योरम 2: किसी सर्कल के किसी बिंदु पर खींची गई स्पर्श रेखा उस बिंदु पर रेडियस के लंब होती है।
    • (OC ⟂ AB जहाँ AB स्पर्श रेखा है)।
  3. थ्योरम 3: बाहरी बिंदु से खींची गई दो स्पर्श रेखाओं की लंबाई बराबर होती है।
    • (PA = PB)
  4. थ्योरम 4: बाहरी बिंदु से खींची गई स्पर्श रेखा और सर्कल के बीच की रेखा उन दोनों के बीच के कोण का बाईसेक्टर होती है।

सत्र में एक एकोधारणाएँ और प्रमेय पर विशेष ध्यान दिया गया।

अभ्यास प्रश्न और उत्तर

प्रश्न 1

  • परेशानी: दो केन्द्र सममूल्य सर्कल्स में, बड़े सर्कल की कॉर्ड जो छोटे सर्कल को छूती है वो छोटे सर्कल के संपर्क बिंदु पर द्वि-खंडित होती है।
  • हल: प्रमेय 1 और प्रमेय 2 का उपयोग करते हुए सिद्ध किया गया।

प्रश्न 2

  • परेशानी: एक सर्कल जो क्वाड्रीलेटरल के अंदर अंकित है, साबित करें कि संपर्क बिंदुओं को मिलाने वाली रेखाओं का समांतर उपयोग करते हुए दिशा गुणांक प्रकट करें।
  • प्रमाण: दिए गए द्वी-खंडों, संपर्क बिंदुओं, और कोणों को उपयोग करते हुए हल।

प्रश्न 3

  • परेशानी: त्रिभुज में सर्कल की ओर से खींची गई स्पर्श रेखाओं की लंबाई दिखाने के लिए परीमाप गुणांक का उपयोग करें।
  • हल: त्रिभुज की तीनो भुजाओं की लंबाई जोड़कर परीमाप निकाला गया और एक की लंबाई आधी बताई।

प्रश्न 4

  • परेशानी: सर्कलों के साथ त्रिभुज के अनुपात का उपयोग करते हुए कोणों की लंबाई ज्ञात करें।
  • हल: बायोगोनल एंगल सिद्धांत और सेंटर से जुड़ी रेखाओं का उपयोग करते हुए हल।

प्रश्न 5

  • परेशानी: कक्षा 10वीं के प्रश्नों का हल। पेयरिंग और बीपीटी (बराबरी प्रमेयांतर प्रमेय) का उपयोग किया।
  • हल: विभिन्न त्रिभुजों, स्पर्श रेखाओं और पाइथागोरस प्रमेय का उपयोग करते हुए हल किया।

समापन

  • छात्रों को विभिन्न प्रकार के प्रश्न हल करने में सहायता की। विभिन्न प्रमेय और सिद्धांतों के अभ्यास के लिए सुझाव दिए।
  • अगले दिन की कक्षा की योजना बताई।

नोट्स की संरचना और उपयोग:

  • 100 में से 100 अंक प्राप्त करने का लक्ष्य रखा गया।
  • प्रत्येक प्रमेय और सिद्धांत को ध्यान से समझाया।
  • अगले दिन विशेष विषय: सर्कल्स के क्षेत्रफल पर आधारित चैप्टर।

भैया ने छात्रों को प्रेरित किया और अगले सत्र में जल्द मिलने की घोषणा की!