Truth Tables and Statement Evaluation

Jun 9, 2024

Lecture on Truth Tables and Evaluating Statements

Introduction

  • Building on last class's truth table operator definitions
  • Focus on constructing truth tables and using them to evaluate statements
  • Future focus: Using truth tables to evaluate arguments

Function of a Truth Table

  • Covers all possible combinations of truth values in a statement
    • Simple statement (e.g., "Matthew likes ice cream"): two possibilities (true or false)
    • Compound statements add complexity with more truth combinations

Combinations Example

  • "Matthew likes ice cream and pizza"
    • True + True
    • True + False
    • False + True
    • False + False
  • Adding a third component (e.g., Cheetos) increases complexity further
    • Total combinations: 8 (2^3)

Formula for Combinations

  • General formula: L = 2^N
    • L = number of rows
    • N = number of different letters

Defining Rows and Columns

  • Row: Horizontal (left to right)
  • Column: Vertical (up and down)

Example Scenarios

  • Two letters: P and Q
    • Rows: 4 (2^2)
    • P provides 2 rows
    • Q doubles to 4 rows
  • Three letters: P, Q, and R
    • Rows: 8 (2^3)
    • Example: P horseshoe Q, triple bar R

Common Sense Approach

  • First letter: 2 rows
  • Each additional letter doubles the number of rows

Creating the Key

  • Read letters left to right: P, Q, R
  • Double rows with each new letter: 2, 4, 8
  • Example key setup: P, Q, R (8 rows)
  • Procedure: True/False pattern
    • Divide column in half each time moving right (4, 2, 1)

Using the Key

  • Plug the key into the expression to evaluate
  • Solve the most inner parentheses first, then work outward
  • Example evaluation:
    • Left side: P horseshoe R
    • Right side: Q dot R
    • Main operator: Wedge

Solving the Statement

  • Step-by-step solving of each operator
    • P horseshoe R
    • Q dot R
    • Combine with main operator (wedge)

Interpretation of Results

  • Main operator column determines the statement's logical status:
    • All true: Logically true or tautology
    • All false: Logically false or self-contradictory
    • Mixed true/false: Contingent
  • Example result: Contingent (both true and false present)

Practice Scenario

  • Example statement: "(P horseshoe Q) dot P horseshoe Q"
    • Determine number of rows
    • Set up key with truth values
    • Evaluate inner expressions and main operator
    • Result: Tautology (all true)

Next Steps

  • Continue practicing statement evaluation
  • Next class: Evaluating arguments using truth tables

Conclusion

  • Focus on mastering keys and basic evaluation techniques today
  • Prepare for argument evaluation in the next class