Understanding Parametric Equations and Their Graphs

Oct 18, 2024

Graphing Parametric Equations and Eliminating the Parameter

Introduction

  • Focus on graphing parametric equations.
  • Discussion on eliminating the parameter.
  • Example parametric equations and their solutions.

Basic Example

  • Equations:
    • ( x = t + 2 )
    • ( y = t^2 )
    • ( t ) from (-2) to (2)
  • Steps:
    1. Make a table with columns ( t, x, y ).
    2. Calculate ( x ) and ( y ) for each ( t ) value.
    3. Plot the ( (x,y) ) points ignoring ( t ).
    4. Draw arrows indicating increasing ( t ).

Further Example: Square Roots

  • Equations:
    • ( x = \sqrt{t} )
    • ( y = 3t + 1 )
  • Domain Change: ( t \geq 0 ).
  • Choose values of ( t ): 0, 1, 4, 9.
  • Calculate and plot ( x ) and ( y ) values.

Eliminating the Parameter

  • Example:
    • ( x = 2t - 4 ), ( y = 4t^2 ).
  • Process:
    1. Solve for ( t ) in terms of ( x ).
    2. Substitute ( t ) into the second equation.
    3. Graph the resulting ( y = f(x) ).

Trigonometric Functions

  • Example:
    • ( x = 3 \sin t )
    • ( y = 3 \cos t )
    • ( t ) between 0 and ( 2\pi ).
  • Use identity: ( \sin^2 t + \cos^2 t = 1 ).
  • Graph results in a circle.

Graphing Ellipses

  • Example:
    • ( x = 3 + 2 \cos t )
    • ( y = -1 + 2 \sin t )
  • Process:
    1. Isolate ( \cos t ) and ( \sin t ).
    2. Use Pythagorean identity.
    3. Resulting equation defines an ellipse.

Exponential Functions

  • Example:
    • ( x = 2^t )
    • ( y = 2^{-t} )
  • Eliminate ( t ) using logarithms.
  • Resulting ( y = \frac{1}{x} ) equation.

Adding a Parameter

  • Transform rectangular equations back into parametric form.
  • Example:
    • Equation: ( y = 3x + 5 ).
    • Set ( t = x ), then ( y = 3t + 5 ).

Practice Problems

  • Practice turning equations like ( y = x^2 + 3 ) and ( y = x^3 + 8 ) into parametric form.
  • Use substitution and algebraic manipulation.

Conclusion

  • Understanding of graphing parametric equations.
  • Techniques for eliminating parameters to form Cartesian equations.
  • How to add parameters to equations.

This summary captures key learnings on parametric equations and their conversions. Use these notes for quick reference and study.