Overview of Basic Matrix Concepts

Sep 2, 2024

Matrices Lecture Notes

Introduction

  • Topic: Matrices
  • Importance: Crucial topic for scoring
  • Objective: Finding inverse, rank, adjoint

Types of Matrices

1. Square Matrix

  • Definition: Rows and columns are equal
  • Example:
    • 2x2: [\begin{bmatrix} 2 & 1 \ 3 & -1 \end{bmatrix}]
    • 3x3: [\begin{bmatrix} 1 & 0 & -1 \ 3 & 2 & 1 \ -1 & 3 & 2 \end{bmatrix}]

2. Rectangular Matrix

  • Definition: Rows ≠ Columns
  • Example: 2x3 matrix

3. Unit or Identity Matrix

  • Definition: Diagonally 1, all others 0
  • Note: Always square

4. Scalar Matrix

  • Definition: Diagonally the same number
  • Example: 5I

5. Upper and Lower Triangular Matrix

  • Upper Triangular: Below diagonal 0
  • Lower Triangular: Above diagonal 0

Transpose of Matrix

  • Definition: Converting row into column
  • Example:
    • [A = \begin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}], [A^T = \begin{bmatrix} 1 & 3 \ 2 & 4 \end{bmatrix}]

Symmetric and Skew Symmetric Matrices

Symmetric Matrix

  • Definition: (A^T = A)

Skew Symmetric Matrix

  • Definition: (A^T = -A)

Determinant of Matrix

  • Definition: Process to find the value of a matrix
  • Example:
    • For matrix A, find (det(A))

Additional Information

  • GATE Question: Join option will be available for GATE questions
  • Time: Some lectures might be at night

Conclusion

  • Detail: Next lecture will cover A inverse and methods of adjoint
  • Time: Next session will be at 11 PM

Note: All students are suggested to subscribe and press the bell icon to receive all notifications.