RLC Circuit Analysis and Calculations

May 4, 2025

Series RLC Circuit Analysis

Introduction

  • Focus: Series RLC Circuit
  • Components: Capacitor, Inductor, Resistor, AC Signal

Circuit Details

  • Resistor: 30 Ω
  • Inductor: 100 mH
  • Capacitor: 40 µF
  • AC Signal: 15 V, 60 Hz

Part A: Capacitive Reactance

  • Formula: [ X_C = \frac{1}{2 \pi f C} ]
    • Frequency ( f = 60 ) Hz
    • Capacitance ( C = 40 \times 10^{-6} ) F
  • Capacitive Reactance: ( X_C = 66.3 ) Ω

Part B: Inductive Reactance

  • Formula: [ X_L = 2 \pi f L ]
    • Inductance ( L = 100 \times 10^{-3} ) H
  • Inductive Reactance: ( X_L = 37.7 ) Ω

Impedance Calculation

  • Formula: [ Z = \sqrt{R^2 + (X_L - X_C)^2} ]
  • Given:
    • Resistance ( R = 30 ) Ω
    • Inductive Reactance ( X_L = 37.7 ) Ω
    • Capacitive Reactance ( X_C = 66.3 ) Ω
  • Impedance (Z): 41.45 Ω

Part C: RMS Current

  • Formula: [ I_{RMS} = \frac{V}{Z} ]
  • RMS Current: 0.3619 A_

Part D: Voltage Across Components

  • Resistor (V_R):

    • Formula: ( V_R = I_{RMS} \times R )
    • Voltage: 10.857 V
  • Inductor (V_L):

    • Formula: ( V_L = I_{RMS} \times X_L )
    • Voltage: 13.644 V
  • Capacitor (V_C):

    • Formula: ( V_C = I_{RMS} \times X_C )
    • Voltage: 23.994 V
  • Verification:

    • Formula: ( V_S = \sqrt{V_R^2 + (V_L - V_C)^2} )
    • Calculated Source Voltage: ~15 V_

Part E: Power Consumption

  • Power Formula:

    • [ P = I_{RMS}^2 \times R ]
    • Power: 3.929 W
  • Alternative Formula:

    • [ P = V_{RMS} \times I_{RMS} \times \text{Power Factor} ]
    • Power Factor: ( \frac{R}{Z} = 0.7238 )
    • Result: 3.929 W (confirms previous calculation)_

Resonant Frequency

  • Formula: [ f_0 = \frac{1}{2 \pi \sqrt{LC}} ]
    • ( L = 0.1 ) H
    • ( C = 40 \times 10^{-6} ) F
  • Resonant Frequency: 79.6 Hz
  • Key Point: At resonant frequency, ( X_L = X_C ) and ( Z = R )