🔍

Learning Antidifferentiation through Substitution

Mar 1, 2025

Module 5: Anti-Differentiation by Substitution

Learning Objective

  • Compute the antiderivative of a function using the substitution rule.

Recap: Antiderivatives of Trigonometric Functions

  • Antiderivative of sine x dx:
    • (-\cos x + C)
  • Antiderivative of cosine x dx:
    • (\sin x + C)
  • Antiderivative of sec^2 x dx:
    • (\tan x + C)
  • Antiderivative of csc^2 x dx:
    • (-\cot x + C)
  • Antiderivative of sec x tan x dx:
    • (\sec x + C)
  • Antiderivative of csc x cot x dx:
    • (-\csc x + C)

Introduction to Integration by Substitution

  • Also known as u-substitution.
  • Useful for integrals in the form:
    • (\int f(g(x)) \cdot g'(x) , dx)
  • Identify (g(x)) and its derivative (g'(x) dx).

Examples

Example 1

  • Problem: (\int (x-1)^3 , dx)
  • Method:
    • Let (u = x - 1), hence (du = dx).
    • Rewrite integral: (\int u^3 , du)
    • Integrate: (\frac{u^4}{4} + C)
    • Substitute back: (\frac{(x-1)^4}{4} + C)

Example 2

  • Problem: (\int (x^5 - 3)^8 \cdot 5x^4 , dx)
  • Method:
    • Let (u = x^5 - 3), hence (du = 5x^4 , dx).
    • Rewrite integral: (\int u^8 , du)
    • Integrate: (\frac{u^9}{9} + C)
    • Substitute back: (\frac{(x^5 - 3)^9}{9} + C)

Example 3

  • Problem: (\int (5x - 2)^7 , dx)
  • Method:
    • Let (u = 5x - 2), hence (du = 5 , dx).
    • (\frac{1}{5} du = dx)
    • Rewrite integral: (\frac{1}{5} \int u^7 , du)
    • Integrate: (\frac{1}{5} \cdot \frac{u^8}{8} + C)
    • Simplify: (\frac{(5x - 2)^8}{40} + C)

Example 4

  • Problem: (\int \frac{2x}{\sqrt{x^2 + 1}} , dx)
  • Method:
    • Let (u = x^2 + 1), hence (du = 2x , dx).
    • Rewrite integral: (\int \frac{1}{\sqrt{u}} , du)
    • Integrate: (2\sqrt{u} + C)
    • Substitute back: (2\sqrt{x^2 + 1} + C)

Conclusion

  • Practice through activities provided in the module.

Motivation

  • Quote by Gordon B. Hinckley: "There is no substitute under the heavens for productive labor..."

  • Note: Ensure to work through the practice problems in the module to solidify understanding.