Coconote
AI notes
AI voice & video notes
Try for free
Differential Equations Third Exam Spring 2024
Jun 26, 2024
Differential Equations Third Exam Spring 2024
Exam Structure
Topics Covered
: Thea transforms, series
Number of Problems
: 6
Initial Step
: Write your name on the exam
Problem 1: Inverse Laplace Transform
Given
: (\frac{2s^3 - 1}{s^2 (s^2 + 1)})
Task
: Find the inverse Laplace transform
Procedure
:
Partial Fractions
: Break down the fraction using constants A, B, C, D.
Identify Constants
: Use s = 0 to find B, then use polynomial comparison.
Results
:
( B = -1 )
( A = 0 )
( C = 2 )
( D = 1 )
Laplace Components
: (-1 \cdot \frac{1}{s^2}, \, 2s \pm 1\cdot\frac{1}{s^2 + 1})
Inverse Laplace
: (-t + 2\cos(t) + \sin(t))
Problem 2: Laplace Transform of Given Functions
Given
: (\frac{s}{s^4 + 1} + F(0) = 0, F'(0) = 0)
Task
: Identify the Laplace transforms for a set of given equations
Methods
:
Using Rules
: Apply rules for derivatives and convolutions
Results
:
(\mathcal{L}(f'(t)) = \frac{s^3}{s^4 + 1})
(\mathcal{L}(tf(t)) = \frac{3s^4 - 1}{s^4 + 1})
(\mathcal{L}(\int_0^t f(\tau)f(t-\tau)d\tau) = \frac{s^2}{s^4 + 1}^2)
(\mathcal{L}(e^{5t}f(t)) = \frac{s-5}{(s-5)^4 + 1})
(\mathcal{L}(u(t-5)f(t-5)) = e^{-5s} \mathcal{L}(f(t)))
Problem 3: Piecewise Function Laplace Transform
Given
: (f(t)): $4t$ if $t<2$ and $t^2 + 4$ if $t \geq 2$
Part A Task
: Find the Laplace transform
Method
:
Rewrite the function by using Heaviside function
Transform Parts
: (\mathcal{L}(4t), \mathcal{L}(U(t-2)[t^2 + 4 - 4t]))
Results
:(\frac{4}{s^2} + \frac{2e^{-2s}}{s^3})
Problem 3: Part B
Given
: Integrable function in the complex form
Express
: Integrand as a convolution
Result
: Transform using gamma function
Result
: (\mathcal{L}(F * t^{-1/2}) = \frac{4\sqrt{\pi}}{s^{2.5}})
Problem 4: Mass-Spring System
Given
: Mass, spring constant, initial conditions
Part A Task
: Set up the differential equation
Result
: (X'' + 4X = 2\delta(t-3) + 7\delta(t-5))
Part B Task
: Solve the differential equation using Laplace
Equation
: (\mathcal{L}(X'') + 4\mathcal{L}(X) = 2e^{-3s} + 7e^{-5s})
Solution
: (X(t) = 2U(t-3)\sin(2(t-3)) + 7U(t-5)\sin(2(t-5)))
Problem 5: Series Solution to Differential Equation
Given
: (Y = \sum_{n=0}^{\infty}a_nx^n)
Task
: Find recurrence relation
Key Steps
:
Identify derivatives
Substitute series into differential equation
Collect terms/powers
Results
: (a_{n+2} = \frac{a_n(-2n-1)}{(n+2)(n+1)})
Problem 6: Finding Coefficients in Series
Given
: Series for Y and a differential equation
Initial Conditions
: Given explicitly
Task
: Find B0, B1, B2, B3
Set up equations using initial conditions
Substitute and solve equations
Results
:
(B_0 = 1)
(B_1 = 0)
(B_2 = 1)
(B_3 = -\frac{1}{6})
Summary
Follow systematic approaches in solving differential equations using the Laplace transform
Understand the application of partial fractions and convolution technique
Utilize initial conditions effectively in series solutions
📄
Full transcript