Coconote
AI notes
AI voice & video notes
Try for free
Understanding Photon Wavelength and Frequency
Nov 6, 2024
Lecture Notes: Calculating Wavelength and Frequency of Photons
Key Concepts
Photon's Wavelength and Frequency
:
Wavelength (λ) and frequency (ν) are inversely related.
Speed of light (c) is a constant: (3 \times 10^8 \text{ m/s}).
Equations Used
Basic Relation
: ( c = \lambda \times \nu )
Rearranged for Wavelength: ( \lambda = \frac{c}{\nu} )
Rearranged for Frequency: ( \nu = \frac{c}{\lambda} )
Energy Relation
: Energy (E) and frequency relation: ( E = h \times \nu )
( h ) is Planck's constant: (6.626 \times 10^{-34} \text{ J·s})
Problem Solutions
Problem 1: Calculate Wavelength
Given
: Frequency ( \nu = 2.5 \times 10^{12} \text{ Hz})
Solution
:
( \lambda = \frac{3 \times 10^8}{2.5 \times 10^{12}})
Result: (1.2 \times 10^{-4} \text{ m})
Conversion to micrometers: (1.2 \times 10^2 = 120 \text{ micrometers})
Problem 2: Calculate Frequency
Given
: Wavelength (\lambda = 1.5 \times 10^{-8} \text{ m})
Solution
:
(\nu = \frac{3 \times 10^{8}}{1.5 \times 10^{-8}})
Result: (2 \times 10^{16} \text{ Hz})
Problem 3: Frequency with Nanometer Wavelength
Given
: Wavelength (\lambda = 350 \text{ nm})
Conversion
: (1 \text{ nm} = 10^{-9} \text{ m})
Solution
:
(\nu = \frac{3 \times 10^8}{350 \times 10^{-9}})
Result: (8.57 \times 10^{14} \text{ Hz})
Problem 4: Wavelength with Megahertz Frequency
Given
: Frequency (\nu = 95 \text{ MHz})
Conversion
: (95 \text{ MHz} = 95 \times 10^{6} \text{ Hz})
Solution
:
(\lambda = \frac{3 \times 10^8}{95 \times 10^6})
Result: (3.16 \text{ m})
Additional Insights
Inverse Relationship
:
As frequency (\nu) increases, wavelength (\lambda) decreases.
As wavelength (\lambda) increases, frequency (\nu) decreases.
Energy and Frequency
Problem: Calculate Frequency from Energy
Given
: Energy (E = 3.5 \times 10^{-18} \text{ J})
Solution
:
(\nu = \frac{3.5 \times 10^{-18}}{6.626 \times 10^{-34}})
Result: (5.28 \times 10^{15} \text{ Hz})
Problem: Wavelength from Energy
Given
: Energy (E = 4.3 \times 10^{-19} \text{ J})
Steps
:
Calculate frequency: (\nu = \frac{4.3 \times 10^{-19}}{6.626 \times 10^{-34}})
Result: (6.49 \times 10^{14} \text{ Hz})
Calculate wavelength: (\lambda = \frac{3 \times 10^8}{6.49 \times 10^{14}})
Result: (4.62 \times 10^{-7} \text{ m})
Convert to nanometers: (4.62 \times 10^{-7} \text{ m} = 462 \text{ nm})
Conclusion
Understanding the relationship between wavelength, frequency, and energy is crucial for solving physics problems related to photons.
Proficiency in unit conversions is important for handling various problem contexts.
📄
Full transcript