Understanding Photon Wavelength and Frequency

Nov 6, 2024

Lecture Notes: Calculating Wavelength and Frequency of Photons

Key Concepts

  • Photon's Wavelength and Frequency:
    • Wavelength (λ) and frequency (ν) are inversely related.
    • Speed of light (c) is a constant: (3 \times 10^8 \text{ m/s}).

Equations Used

  • Basic Relation: ( c = \lambda \times \nu )
    • Rearranged for Wavelength: ( \lambda = \frac{c}{\nu} )
    • Rearranged for Frequency: ( \nu = \frac{c}{\lambda} )
  • Energy Relation: Energy (E) and frequency relation: ( E = h \times \nu )
    • ( h ) is Planck's constant: (6.626 \times 10^{-34} \text{ J·s})

Problem Solutions

Problem 1: Calculate Wavelength

  • Given: Frequency ( \nu = 2.5 \times 10^{12} \text{ Hz})
  • Solution:
    • ( \lambda = \frac{3 \times 10^8}{2.5 \times 10^{12}})
    • Result: (1.2 \times 10^{-4} \text{ m})
    • Conversion to micrometers: (1.2 \times 10^2 = 120 \text{ micrometers})

Problem 2: Calculate Frequency

  • Given: Wavelength (\lambda = 1.5 \times 10^{-8} \text{ m})
  • Solution:
    • (\nu = \frac{3 \times 10^{8}}{1.5 \times 10^{-8}})
    • Result: (2 \times 10^{16} \text{ Hz})

Problem 3: Frequency with Nanometer Wavelength

  • Given: Wavelength (\lambda = 350 \text{ nm})
  • Conversion: (1 \text{ nm} = 10^{-9} \text{ m})
  • Solution:
    • (\nu = \frac{3 \times 10^8}{350 \times 10^{-9}})
    • Result: (8.57 \times 10^{14} \text{ Hz})

Problem 4: Wavelength with Megahertz Frequency

  • Given: Frequency (\nu = 95 \text{ MHz})
  • Conversion: (95 \text{ MHz} = 95 \times 10^{6} \text{ Hz})
  • Solution:
    • (\lambda = \frac{3 \times 10^8}{95 \times 10^6})
    • Result: (3.16 \text{ m})

Additional Insights

  • Inverse Relationship:
    • As frequency (\nu) increases, wavelength (\lambda) decreases.
    • As wavelength (\lambda) increases, frequency (\nu) decreases.

Energy and Frequency

Problem: Calculate Frequency from Energy

  • Given: Energy (E = 3.5 \times 10^{-18} \text{ J})
  • Solution:
    • (\nu = \frac{3.5 \times 10^{-18}}{6.626 \times 10^{-34}})
    • Result: (5.28 \times 10^{15} \text{ Hz})

Problem: Wavelength from Energy

  • Given: Energy (E = 4.3 \times 10^{-19} \text{ J})
  • Steps:
    1. Calculate frequency: (\nu = \frac{4.3 \times 10^{-19}}{6.626 \times 10^{-34}})
      • Result: (6.49 \times 10^{14} \text{ Hz})
    2. Calculate wavelength: (\lambda = \frac{3 \times 10^8}{6.49 \times 10^{14}})
      • Result: (4.62 \times 10^{-7} \text{ m})
    3. Convert to nanometers: (4.62 \times 10^{-7} \text{ m} = 462 \text{ nm})

Conclusion

  • Understanding the relationship between wavelength, frequency, and energy is crucial for solving physics problems related to photons.
  • Proficiency in unit conversions is important for handling various problem contexts.