Understanding Negation, Conjunction, and Disjunction

Sep 6, 2024

Negation, Conjunction, and Disjunction in Logic

Negation

  • Definition: Negation means 'not'. It is the opposite truth value of a given statement.
  • Truth Value:
    • If statement P is true, negation of P is false.
    • If statement P is false, negation of P is true.
  • Truth Table for Negation:
    • P: True -> ~P: False
    • P: False -> ~P: True

Conjunction

  • Definition: Conjunction means 'and'.
  • Truth Value:
    • True only when both statements are true.
    • If either or both statements are false, the conjunction is false.
  • Truth Table for Conjunction (P and Q):
    • P: True, Q: True -> P ∧ Q: True
    • P: True, Q: False -> P ∧ Q: False
    • P: False, Q: True -> P ∧ Q: False
    • P: False, Q: False -> P ∧ Q: False

Disjunction

  • Definition: Disjunction means 'or'.
  • Truth Value:
    • True if either or both statements are true.
    • False only when both statements are false.
  • Truth Table for Disjunction (P or Q):
    • P: True, Q: True -> P ∨ Q: True
    • P: True, Q: False -> P ∨ Q: True
    • P: False, Q: True -> P ∨ Q: True
    • P: False, Q: False -> P ∨ Q: False

Examples

  1. Conjunction Example (P and Q):

    • P: 10 > 4 (True), Q: 3 < 5 (True)
    • Since both P and Q are true, P ∧ Q is True.
  2. Conjunction with Negation (not P and Q):

    • P: True, negation of P is False.
    • Q is True.
    • Since P is negated to False, not P ∧ Q is False.
  3. Disjunction Example (P or not Q):

    • P is True, Q is True, not Q is False.
    • Since P is True, P ∨ not Q is True.
  4. Disjunction with Double Negation (not P or not Q):

    • Both not P and not Q are False.
    • Therefore, not P ∨ not Q is False.

Key Takeaways

  • Negation flips the truth value.
  • Conjunction requires both statements to be true.
  • Disjunction requires at least one statement to be true.