Triangle Solutions with Cosines and Sines

Apr 18, 2025

Solving Triangles Using Law of Cosines and Law of Sines

Introduction

  • When given a triangle with different side and angle measures, specific laws in trigonometry can be used to find missing sides or angles.
  • Key laws: Law of Cosines and Law of Sines.

Example 1: Solving a Triangle with Given Sides and Angle

  • Given:
    • Side a = 10
    • Side b = 20
    • Angle C = 60 degrees
  • Type of Triangle: Side-Angle-Side (SAS)

Using Law of Cosines

  • Formula: [ c^2 = a^2 + b^2 - 2ab \cdot \cos(C) ]
  • Application:
    • Substitute: a = 10, b = 20, C = 60°
    • [ c^2 = 10^2 + 20^2 - 2(10)(20) \cdot \cos(60°) ]
    • [ c^2 = 100 + 400 - 400(0.5) ]
    • [ c^2 = 300 ]
    • [ c = \sqrt{300} = 10\sqrt{3} \approx 17.32 ]

Using Law of Sines

  • To Find Angle B
  • Formula: [ \frac{c}{\sin(C)} = \frac{b}{\sin(B)} ]
  • Application:
    • [ \frac{17.32}{\sin(60)} = \frac{20}{\sin(B)} ]
    • Solve for sin(B): [ \sin(B) = 1 ]
    • Angle B = arcsin(1) = 90°

Finding Angle A

  • Angle A = 180° - 90° - 60° = 30°
  • Result: The triangle is a right triangle.

Example 2: Solving a Triangle with All Three Sides

  • Given:
    • Side a = 7
    • Side b = 8
    • Side c = 9
  • Type of Triangle: Side-Side-Side (SSS)

Using Law of Cosines

  • Finding Angle C
  • Formula: [ \cos(C) = \frac{c^2 - a^2 - b^2}{-2ab} ]
  • Application
    • [ \cos(C) = \frac{81 - 49 - 64}{-2(7)(8)} ]
    • [ \cos(C) = \frac{-32}{-112} = \frac{2}{7} \approx 0.2857 ]
    • Angle C = arccos(0.2857) \approx 73.4°

Using Law of Sines

  • Finding Angle A
  • Formula: [ \frac{c}{\sin(C)} = \frac{a}{\sin(A)} ]
  • Application:
    • [ \frac{9}{\sin(73.4)} = \frac{7}{\sin(A)} ]
    • Solve for sin(A): [ \sin(A) \approx 0.7453 ]
    • Angle A = arcsin(0.7453) \approx 48.2°

Finding Angle B

  • Angle B = 180° - 73.4° - 48.2° \approx 58.4°

Conclusion

  • Using Laws:
    • Use the Law of Cosines first to solve for angles when given all sides (SSS) or two sides and an included angle (SAS).
    • Then apply the Law of Sines for remaining angles or sides.
    • These methods provide a systematic approach to solving any triangle with given measurements.