Vectors and Directional Angles

Jul 7, 2024

Lecture Notes: Vectors and Directional Angles

Magnitude of V

  • Magnitude Calculation:
    • Formula: |V| = (\sqrt{V_1^2 + V_2^2})
    • Given V in linear combination: V = V1(i) + V2(j)
    • Example:
      • V1 = 6, V2 = -6
      • Calculation: (\sqrt{6^2 + (-6)^2}) = (\sqrt{72})
  • Simplifying (\sqrt{72}):
    • Find the largest square number that divides 72.
    • 72 = 36 * 2
    • Thus, (\sqrt{72} = 6\sqrt{2})
    • Breakdown:
      • Alternative methods: 72 = 12 * 6 and further break down as needed.

Directional Angle

  • **Calculating Directional Angle: **
    • Directional angle (\theta) using tangent:
      • (\tan(\theta) = \frac{V_2}{V_1} = \frac{-6}{6} = -1)
      • (\theta = \tan^{-1}(-1))
    • Result: (\theta = -45°)
    • Converting:
      • Negative angle (-45°) to positive direction by adding 360°: (315°)
      • Thus, (\theta = 315°)

Summary

  • Magnitude of vector V: (6\sqrt{2})
  • Directional angle (\theta): 315°