Title: Fractional calculus
URL Source: https://en.wikipedia.org/wiki/Fractional_calculus
Published Time: 2003-05-19T14:32:07Z
Markdown Content:
**Fractional calculus** is a branch of [mathematical analysis](https://en.wikipedia.org/wiki/Mathematical_analysis "Mathematical analysis") that studies the several different possibilities of defining [real number](https://en.wikipedia.org/wiki/Real_number "Real number") powers or [complex number](https://en.wikipedia.org/wiki/Complex_number "Complex number") powers of the [differentiation](https://en.wikipedia.org/wiki/Derivative "Derivative") [operator](https://en.wikipedia.org/wiki/Operator_(mathematics) "Operator (mathematics)")  
and of the [integration](https://en.wikipedia.org/wiki/Integral "Integral") operator  [\[Note 1\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-1) 
and developing a [calculus](https://en.wikipedia.org/wiki/Calculus "Calculus") for such operators generalizing the classical one.
In this context, the term _powers_ refers to iterative application of a [linear operator](https://en.wikipedia.org/wiki/Linear_operator "Linear operator")  to a [function](https://en.wikipedia.org/wiki/Function_(mathematics) "Function (mathematics)") , that is, repeatedly [composing](https://en.wikipedia.org/wiki/Function_composition "Function composition")  with itself, as in 
For example, one may ask for a meaningful interpretation of 
as an analogue of the [functional square root](https://en.wikipedia.org/wiki/Functional_square_root "Functional square root") for the differentiation operator, that is, an expression for some linear operator that, when applied _twice_ to any function, will have the same effect as [differentiation](https://en.wikipedia.org/wiki/Derivative "Derivative"). More generally, one can look at the question of defining a linear operator 
for every real number  in such a way that, when  takes an [integer](https://en.wikipedia.org/wiki/Integer "Integer") value , it coincides with the usual \-fold differentiation  if , and with the \-th power of  when .
One of the motivations behind the introduction and study of these sorts of extensions of the differentiation operator  is that the [sets](https://en.wikipedia.org/wiki/Set_(mathematics) "Set (mathematics)") of operator powers  defined in this way are _continuous_ [semigroups](https://en.wikipedia.org/wiki/Semigroup "Semigroup") with parameter , of which the original _discrete_ semigroup of  for integer  is a [denumerable](https://en.wikipedia.org/wiki/Denumerable_set "Denumerable set") subgroup: since continuous semigroups have a well developed mathematical theory, they can be applied to other branches of mathematics.
Fractional [differential equations](https://en.wikipedia.org/wiki/Differential_equation "Differential equation"), also known as extraordinary differential equations,[\[1\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Zwillinger2014-2) are a generalization of differential equations through the application of fractional calculus.
In [applied mathematics](https://en.wikipedia.org/wiki/Applied_mathematics "Applied mathematics") and mathematical analysis, a **fractional derivative** is a derivative of any arbitrary order, real or complex. Its first appearance is in a letter written to [Guillaume de l'Hpital](https://en.wikipedia.org/wiki/Guillaume_de_l%27H%C3%B4pital "Guillaume de l'Hpital") by [Gottfried Wilhelm Leibniz](https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz "Gottfried Wilhelm Leibniz") in 1695.[\[2\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Derivative-3) Around the same time, Leibniz wrote to [Johann Bernoulli](https://en.wikipedia.org/wiki/Johann_Bernoulli "Johann Bernoulli") about derivatives of "general order".[\[3\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-:1-4) In the correspondence between Leibniz and [John Wallis](https://en.wikipedia.org/wiki/John_Wallis "John Wallis") in 1697, Wallis's infinite product for  is discussed. Leibniz suggested using differential calculus to achieve this result. Leibniz further used the notation  to denote the derivative of order .[\[3\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-:1-4)
Fractional calculus was introduced in one of [Niels Henrik Abel](https://en.wikipedia.org/wiki/Niels_Henrik_Abel "Niels Henrik Abel")'s early papers[\[4\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-5) where all the elements can be found: the idea of fractional-order integration and differentiation, the mutually inverse relationship between them, the understanding that fractional-order differentiation and integration can be considered as the same generalized operation, and the unified notation for differentiation and integration of arbitrary real order.[\[5\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-6) Independently, the foundations of the subject were laid by [Liouville](https://en.wikipedia.org/wiki/Liouville "Liouville") in a paper from 1832.[\[6\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-7)[\[7\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-8)[\[8\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-9) [Oliver Heaviside](https://en.wikipedia.org/wiki/Oliver_Heaviside "Oliver Heaviside") introduced the practical use of [fractional differential operators](https://en.wikipedia.org/wiki/Operational_calculus "Operational calculus") in electrical transmission line analysis circa 1890.[\[9\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-10) The theory and applications of fractional calculus expanded greatly over the 19th and 20th centuries, and numerous contributors have given different definitions for fractional derivatives and integrals.[\[10\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-11)
Computing the fractional integral
---------------------------------
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=2 "Edit section: Computing the fractional integral")\]
Let _f_(_x_) be a function defined for _x_ \> 0. Form the definite integral from 0 to x. Call this 
Repeating this process gives 
and this can be extended arbitrarily.
The [Cauchy formula for repeated integration](https://en.wikipedia.org/wiki/Cauchy_formula_for_repeated_integration "Cauchy formula for repeated integration"), namely  leads in a straightforward way to a generalization for real n: using the [gamma function](https://en.wikipedia.org/wiki/Gamma_function "Gamma function") to remove the discrete nature of the factorial function gives us a natural candidate for applications of the fractional integral operator as 
This is in fact a well-defined operator.
It is straightforward to show that the J operator satisfies 
| Proof of this identity
|
| --- |
| 
where in the last step we exchanged the order of integration and pulled out the _f_(_s_) factor from the t integration.
Changing variables to r defined by _t_ = _s_ + (_x_ _s_)_r_, 
The inner integral is the [beta function](https://en.wikipedia.org/wiki/Beta_function "Beta function") which satisfies the following property: 
Substituting back into the equation: 
Interchanging and shows that the order in which the J operator is applied is irrelevant and completes the proof.
|
This relationship is called the semigroup property of fractional [differintegral](https://en.wikipedia.org/wiki/Differintegral "Differintegral") operators.
### RiemannLiouville fractional integral
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=3 "Edit section: RiemannLiouville fractional integral")\]
The classical form of fractional calculus is given by the [RiemannLiouville integral](https://en.wikipedia.org/wiki/Riemann%E2%80%93Liouville_integral "RiemannLiouville integral"), which is essentially what has been described above. The theory of fractional integration for [periodic functions](https://en.wikipedia.org/wiki/Periodic_function "Periodic function") (therefore including the "boundary condition" of repeating after a period) is given by the [Weyl integral](https://en.wikipedia.org/wiki/Weyl_integral "Weyl integral"). It is defined on [Fourier series](https://en.wikipedia.org/wiki/Fourier_series "Fourier series"), and requires the constant Fourier coefficient to vanish (thus, it applies to functions on the [unit circle](https://en.wikipedia.org/wiki/Unit_circle "Unit circle") whose integrals evaluate to zero). The RiemannLiouville integral exists in two forms, upper and lower. Considering the interval \[_a_,_b_\], the integrals are defined as 
Where the former is valid for _t_ \> _a_ and the latter is valid for _t_ < _b_.[\[11\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-12)
It has been suggested[\[12\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Mainardi-13) that the integral on the positive real axis (i.e. ) would be more appropriately named the AbelRiemann integral, on the basis of history of discovery and use, and in the same vein the integral over the entire real line be named LiouvilleWeyl integral.
By contrast the [GrnwaldLetnikov derivative](https://en.wikipedia.org/wiki/Gr%C3%BCnwald%E2%80%93Letnikov_derivative "GrnwaldLetnikov derivative") starts with the derivative instead of the integral.
### Hadamard fractional integral
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=4 "Edit section: Hadamard fractional integral")\]
The _Hadamard fractional integral_ was introduced by [Jacques Hadamard](https://en.wikipedia.org/wiki/Jacques_Hadamard "Jacques Hadamard")[\[13\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-14) and is given by the following formula, 
### AtanganaBaleanu fractional integral (AB fractional integral)
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=5 "Edit section: AtanganaBaleanu fractional integral (AB fractional integral)")\]
The AtanganaBaleanu fractional integral of a continuous function is defined as: 
Fractional derivatives
----------------------
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=6 "Edit section: Fractional derivatives")\]
Unfortunately, the comparable process for the derivative operator D is significantly more complex, but it can be shown that D is neither [commutative](https://en.wikipedia.org/wiki/Commutative "Commutative") nor [additive](https://en.wikipedia.org/wiki/Additive_map "Additive map") in general.[\[14\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-15)
Unlike classical Newtonian derivatives, fractional derivatives can be defined in a variety of different ways that often do not all lead to the same result even for smooth functions. Some of these are defined via a fractional integral. Because of the incompatibility of definitions, it is frequently necessary to be explicit about which definition is used.
[](https://en.wikipedia.org/wiki/File:Fractionalderivative.gif)
Fractional derivatives of a Gaussian, interpolating continuously between the function and its first derivative
### RiemannLiouville fractional derivative
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=7 "Edit section: RiemannLiouville fractional derivative")\]
The corresponding derivative is calculated using Lagrange's rule for differential operators. To find the th order derivative, the nth order derivative of the integral of order (_n_ __) is computed, where n is the smallest integer greater than (that is, _n_ = __). The RiemannLiouville fractional derivative and integral has multiple applications such as in case of solutions to the equation in the case of multiple systems such as the tokamak systems, and Variable order fractional parameter.[\[15\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Mostafanejad-16)[\[16\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Al-Raeei-17) Similar to the definitions for the RiemannLiouville integral, the derivative has upper and lower variants.[\[17\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-18) 
### Caputo fractional derivative
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=8 "Edit section: Caputo fractional derivative")\]
Another option for computing fractional derivatives is the [Caputo fractional derivative](https://en.wikipedia.org/wiki/Caputo_fractional_derivative "Caputo fractional derivative"). It was introduced by [Michele Caputo](https://en.wikipedia.org/w/index.php?title=Michele_Caputo&action=edit&redlink=1 "Michele Caputo (page does not exist)") in his 1967 paper.[\[18\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-19) In contrast to the RiemannLiouville fractional derivative, when solving differential equations using Caputo's definition, it is not necessary to define the fractional order initial conditions. Caputo's definition is illustrated as follows, where again _n_ = __: 
There is the Caputo fractional derivative defined as:  which has the advantage that it is zero when _f_(_t_) is constant and its Laplace Transform is expressed by means of the initial values of the function and its derivative. Moreover, there is the Caputo fractional derivative of distributed order defined as ![Image 45: {\displaystyle {\begin{aligned}\sideset {_{a}^{b}}{^{n}u}Df(t)&=\int _{a}^{b}\phi (\nu )\left[D^{(\nu )}f(t)\right]\,d\nu \\&=\int _{a}^{b}\left[{\frac {\phi (\nu )}{\Gamma (1-\nu )}}\int _{0}^{t}\left(t-u\right)^{-\nu }f'(u)\,du\right]\,d\nu \end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/50d42263d28b3965e20b9d49daadc8625ce5432e)
where __(__) is a weight function and which is used to represent mathematically the presence of multiple memory formalisms.
### CaputoFabrizio fractional derivative
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=9 "Edit section: CaputoFabrizio fractional derivative")\]
In a paper of 2015, M. Caputo and M. Fabrizio presented a definition of fractional derivative with a non singular kernel, for a function  of  given by: 
where ![Image 49: {\displaystyle a<0,\alpha \in (0,1]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/191e796c1152367c593e26bced3b6bf24171e6b9).[\[19\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-20)
### AtanganaBaleanu fractional derivative
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=10 "Edit section: AtanganaBaleanu fractional derivative")\]
In 2016, Atangana and Baleanu suggested differential operators based on the generalized [Mittag-Leffler function](https://en.wikipedia.org/wiki/Mittag-Leffler_function "Mittag-Leffler function") . The aim was to introduce fractional differential operators with non-singular nonlocal kernel. Their fractional differential operators are given below in RiemannLiouville sense and Caputo sense respectively. For a function  of  given by [\[20\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Algahtani2016-21)[\[21\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-doiserbia.nb.rs-22) 
If the function is continuous, the AtanganaBaleanu derivative in RiemannLiouville sense is given by: 
The kernel used in AtanganaBaleanu fractional derivative has some properties of a cumulative distribution function. For example, for all ![Image 55: {\displaystyle \alpha \in (0,1]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3ea174265d33ba6eed47a00e6ebffedda57cb03e), the function  is increasing on the real line, converges to  in , and . Therefore, we have that, the function  is the cumulative distribution function of a probability measure on the positive real numbers. The distribution is therefore defined, and any of its multiples is called a [Mittag-Leffler distribution](https://en.wikipedia.org/wiki/Mittag-Leffler_distribution "Mittag-Leffler distribution") of order . It is also very well-known that, all these probability distributions are [absolutely continuous](https://en.wikipedia.org/wiki/Absolute_continuity "Absolute continuity"). In particular, the function Mittag-Leffler has a particular case , which is the exponential function, the Mittag-Leffler distribution of order  is therefore an [exponential distribution](https://en.wikipedia.org/wiki/Exponential_distribution "Exponential distribution"). However, for , the Mittag-Leffler distributions are [heavy-tailed](https://en.wikipedia.org/wiki/Heavy-tailed_distribution "Heavy-tailed distribution"). Their Laplace transform is given by: 
This directly implies that, for , the expectation is infinite. In addition, these distributions are [geometric stable distributions](https://en.wikipedia.org/wiki/Geometric_stable_distribution "Geometric stable distribution").
The Riesz derivative is defined as 
where  denotes the [Fourier transform](https://en.wikipedia.org/wiki/Fourier_transform "Fourier transform").[\[22\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-23)[\[23\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-24)
### Conformable fractional derivative
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=12 "Edit section: Conformable fractional derivative")\]
The conformable fractional derivative of a function  of order  is given byUnlike other definitions of the fractional derivative, the conformable fractional derivative obeys the [product](https://en.wikipedia.org/wiki/Product_rule "Product rule") and [quotient rule](https://en.wikipedia.org/wiki/Quotient_rule "Quotient rule") has analogs to [Rolle's theorem](https://en.wikipedia.org/wiki/Rolle%27s_theorem "Rolle's theorem") and the [mean value theorem](https://en.wikipedia.org/wiki/Mean_value_theorem "Mean value theorem").[\[24\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-25)[\[25\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-:0-26) However, this fractional derivative produces significantly different results compared to the Riemann-Liouville and Caputo fractional derivative. In 2020, Feng Gao and Chunmei Chi defined the improved Caputo-type conformable fractional derivative, which more closely approximates the behavior of the Caputo fractional derivative:[\[25\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-:0-26)![Image 72: {\displaystyle _{a}^{C}{\widetilde {T}}_{a}(f)(t)=\lim _{\epsilon \rightarrow 0}\left[(1-\alpha )(f(t)-f(a))+\alpha {\frac {f\left(t+\epsilon (t-a)^{1-\alpha }\right)-f(t)}{\epsilon }}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b734b1eff3248611a8427113297b5d399c716009)where  and  are [real numbers](https://en.wikipedia.org/wiki/Real_numbers "Real numbers") and . They also defined the improved Riemann-Liouville-type conformable fractional derivative to similarly approximate the Riemann-Liouville fractional derivative:[\[25\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-:0-26)
![Image 76: {\displaystyle _{a}^{RL}{\widetilde {T}}_{a}(f)(t)=\lim _{\epsilon \rightarrow 0}\left[(1-\alpha )f(t)+\alpha {\frac {f\left(t+\epsilon (t-a)^{1-\alpha }\right)-f(t)}{\epsilon }}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b9a7ac35d579ba046a3d5066622fe155b09d7af8)where  and  are [real numbers](https://en.wikipedia.org/wiki/Real_numbers "Real numbers") and . Both improved conformable fractional derivatives have analogs to Rolle's theorem and the [interior extremum theorem](https://en.wikipedia.org/wiki/Interior_extremum_theorem "Interior extremum theorem").[\[26\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-27)
Classical fractional derivatives include:
* [GrnwaldLetnikov derivative](https://en.wikipedia.org/wiki/Gr%C3%BCnwald%E2%80%93Letnikov_derivative "GrnwaldLetnikov derivative")[\[27\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-deOliveira2014-28)[\[28\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Aslan2015-29)
* SoninLetnikov derivative[\[28\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Aslan2015-29)
* Liouville derivative[\[27\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-deOliveira2014-28)
* [Caputo derivative](https://en.wikipedia.org/wiki/Differintegral "Differintegral")[\[27\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-deOliveira2014-28)
* Hadamard derivative[\[27\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-deOliveira2014-28)[\[29\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-30)
* Marchaud derivative[\[27\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-deOliveira2014-28)
* Riesz derivative[\[28\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Aslan2015-29)
* MillerRoss derivative[\[27\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-deOliveira2014-28)
* [Weyl derivative](https://en.wikipedia.org/wiki/Weyl_integral "Weyl integral")[\[30\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-31)[\[31\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-32)[\[27\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-deOliveira2014-28)
* [ErdlyiKober derivative](https://en.wikipedia.org/wiki/Erdelyi%E2%80%93Kober_operator "ErdelyiKober operator")[\[27\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-deOliveira2014-28)
* [\-derivative](https://en.wikipedia.org/w/index.php?title=Fractal_calculus&action=edit&redlink=1 "Fractal calculus (page does not exist)")[\[32\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Ali-33)
New fractional derivatives include:
* Coimbra derivative[\[27\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-deOliveira2014-28)
* [Katugampola derivative](https://en.wikipedia.org/wiki/Katugampola_fractional_operators "Katugampola fractional operators")[\[33\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-34)
* Hilfer derivative[\[27\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-deOliveira2014-28)
* Davidson derivative[\[27\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-deOliveira2014-28)
* Chen derivative[\[27\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-deOliveira2014-28)
* [Caputo Fabrizio derivative](https://en.wikipedia.org/w/index.php?title=Caputo_Fabrizio_derivative&action=edit&redlink=1 "Caputo Fabrizio derivative (page does not exist)")[\[20\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Algahtani2016-21)[\[34\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-35)
* AtanganaBaleanu derivative[\[20\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Algahtani2016-21)[\[21\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-doiserbia.nb.rs-22)
The **Coimbra derivative** is used for physical modeling:[\[35\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-36) A number of applications in both mechanics and optics can be found in the works by Coimbra and collaborators,[\[36\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-37)[\[37\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-38)[\[38\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-39)[\[39\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-40)[\[40\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-41)[\[41\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-42)[\[42\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-43) as well as additional applications to physical problems and numerical implementations studied in a number of works by other authors[\[43\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-44)[\[44\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-45)[\[45\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-46)[\[46\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-47)
For 
![Image 82: {\displaystyle {\begin{aligned}^{\mathbb {C} }_{a}\mathbb {D} ^{q(t)}f(t)={\frac {1}{\Gamma [1-q(t)]}}\int _{0^{+}}^{t}(t-\tau )^{-q(t)}{\frac {d\,f(\tau )}{d\tau }}d\tau \,+\,{\frac {(f(0^{+})-f(0^{-}))\,t^{-q(t)}}{\Gamma (1-q(t))}},\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b86ef386ed041f1f311995e8445ae3966aae5c81)
where the lower limit  can be taken as either  or  as long as  is identically zero from or  to . Note that this operator returns the correct fractional derivatives for all values of  and can be applied to either the dependent function itself  with a variable order of the form  or to the independent variable with a variable order of the form .![Image 93: {\displaystyle ^{[1]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c97b3809485cd490e1a61475329776d6b0efee76)
The Coimbra derivative can be generalized to any order,[\[47\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-48) leading to the Coimbra Generalized Order Differintegration Operator (GODO)[\[48\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-49)
For 
![Image 95: {\displaystyle {\begin{aligned}^{\mathbb {\quad C} }_{\,\,-\infty }\mathbb {D} ^{q(t)}f(t)={\frac {1}{\Gamma [m-q(t)]}}\int _{0^{+}}^{t}(t-\tau )^{m-1-q(t)}{\frac {d^{m}f(\tau )}{d\tau ^{m}}}d\tau \,+\,\sum _{n=0}^{m-1}{\frac {({\frac {d^{n}f(t)}{dt^{n}}}|_{0^{+}}-{\frac {d^{n}f(t)}{dt^{n}}}|_{0^{-}})\,t^{n-q(t)}}{\Gamma [n+1-q(t)]}},\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7c269b204f85974c9be81014f037ea5ef374a62c)
where  is an integer larger than the larger value of  for all values of . Note that the second (summation) term on the right side of the definition above can be expressed as
![Image 99: {\displaystyle {\begin{aligned}{\frac {1}{\Gamma [m-q(t)]}}\sum _{n=0}^{m-1}\{[{\frac {d^{n}\!f(t)}{dt^{n}}}|_{0^{+}}-{\frac {d^{n}\!f(t)}{dt^{n}}}|_{0^{-}}]\,t^{n-q(t)}\prod _{j=n+1}^{m-1}[j-q(t)]\}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/40ed12d6afff071f04afe1bc677ef43225ac4b82)
so to keep the denominator on the positive branch of the Gamma () function and for ease of numerical calculation.
### Nature of the fractional derivative
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=15 "Edit section: Nature of the fractional derivative")\]
The \-th derivative of a function  at a point  is a _local property_ only when  is an integer; this is not the case for non-integer power derivatives. In other words, a non-integer fractional derivative of  at  depends on all values of , even those far away from . Therefore, it is expected that the fractional derivative operation involves some sort of [boundary conditions](https://en.wikipedia.org/wiki/Boundary_condition "Boundary condition"), involving information on the function further out.[\[49\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-50)
The fractional derivative of a function of order  is nowadays often defined by means of the [Fourier](https://en.wikipedia.org/wiki/Fourier_transform "Fourier transform") or [Mellin](https://en.wikipedia.org/wiki/Mellin_transform "Mellin transform") integral transforms.\[_[citation needed](https://en.wikipedia.org/wiki/Wikipedia:Citation_needed "Wikipedia:Citation needed")_\]
### ErdlyiKober operator
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=17 "Edit section: ErdlyiKober operator")\]
The [ErdlyiKober operator](https://en.wikipedia.org/wiki/Erd%C3%A9lyi%E2%80%93Kober_operator "ErdlyiKober operator") is an integral operator introduced by [Arthur Erdlyi](https://en.wikipedia.org/wiki/Arthur_Erd%C3%A9lyi "Arthur Erdlyi") (1940).[\[50\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-51) and [Hermann Kober](https://en.wikipedia.org/wiki/Hermann_Kober "Hermann Kober") (1940)[\[51\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-52) and is given by 
which generalizes the [RiemannLiouville fractional integral](https://en.wikipedia.org/wiki/Fractional_calculus#Fractional_integrals) and the Weyl integral.
Functional calculus
-------------------
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=18 "Edit section: Functional calculus")\]
In the context of [functional analysis](https://en.wikipedia.org/wiki/Functional_analysis "Functional analysis"), functions _f_(_D_) more general than powers are studied in the [functional calculus](https://en.wikipedia.org/wiki/Functional_calculus "Functional calculus") of [spectral theory](https://en.wikipedia.org/wiki/Spectral_theorem "Spectral theorem"). The theory of [pseudo-differential operators](https://en.wikipedia.org/wiki/Pseudo-differential_operator "Pseudo-differential operator") also allows one to consider powers of D. The operators arising are examples of [singular integral operators](https://en.wikipedia.org/wiki/Singular_integral_operator "Singular integral operator"); and the generalisation of the classical theory to higher dimensions is called the theory of [Riesz potentials](https://en.wikipedia.org/wiki/Riesz_potential "Riesz potential"). So there are a number of contemporary theories available, within which _fractional calculus_ can be discussed. See also [ErdlyiKober operator](https://en.wikipedia.org/wiki/Erd%C3%A9lyi%E2%80%93Kober_operator "ErdlyiKober operator"), important in [special function](https://en.wikipedia.org/wiki/Special_function "Special function") theory ([Kober 1940](https://en.wikipedia.org/wiki/Fractional_calculus#CITEREFKober1940)), ([Erdlyi 19501951](https://en.wikipedia.org/wiki/Fractional_calculus#CITEREFErd%C3%A9lyi1950%E2%80%931951)).
### Fractional conservation of mass
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=20 "Edit section: Fractional conservation of mass")\]
As described by Wheatcraft and Meerschaert (2008),[\[52\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-53) a fractional conservation of mass equation is needed to model fluid flow when the [control volume](https://en.wikipedia.org/wiki/Control_volume "Control volume") is not large enough compared to the scale of [heterogeneity](https://en.wikipedia.org/wiki/Heterogeneity "Heterogeneity") and when the flux within the control volume is non-linear. In the referenced paper, the fractional conservation of mass equation for fluid flow is: 
### Electrochemical analysis
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=21 "Edit section: Electrochemical analysis")\]
When studying the redox behavior of a substrate in solution, a voltage is applied at an electrode surface to force electron transfer between electrode and substrate. The resulting electron transfer is measured as a current. The current depends upon the concentration of substrate at the electrode surface. As substrate is consumed, fresh substrate diffuses to the electrode as described by [Fick's laws of diffusion](https://en.wikipedia.org/wiki/Fick%27s_laws_of_diffusion "Fick's laws of diffusion"). Taking the Laplace transform of Fick's second law yields an ordinary second-order differential equation (here in dimensionless form): 
whose solution _C_(_x_,_s_) contains a one-half power dependence on s. Taking the derivative of _C_(_x_,_s_) and then the inverse Laplace transform yields the following relationship: 
which relates the concentration of substrate at the electrode surface to the current.[\[53\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-54) This relationship is applied in electrochemical kinetics to elucidate mechanistic behavior. For example, it has been used to study the rate of dimerization of substrates upon electrochemical reduction.[\[54\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-55)
### Groundwater flow problem
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=22 "Edit section: Groundwater flow problem")\]
In 20132014 Atangana et al. described some groundwater flow problems using the concept of a derivative with fractional order.[\[55\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-56)[\[56\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-57) In these works, the classical [Darcy law](https://en.wikipedia.org/wiki/Darcy_law "Darcy law") is generalized by regarding the water flow as a function of a non-integer order derivative of the piezometric head. This generalized law and the law of conservation of mass are then used to derive a new equation for groundwater flow.
### Fractional advection dispersion equation
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=23 "Edit section: Fractional advection dispersion equation")\]
This equation\[_[clarification needed](https://en.wikipedia.org/wiki/Wikipedia:Please_clarify "Wikipedia:Please clarify")_\] has been shown useful for modeling contaminant flow in heterogenous porous media.[\[57\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-58)[\[58\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-59)[\[59\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-60)
Atangana and Kilicman extended the fractional advection dispersion equation to a variable order equation. In their work, the hydrodynamic dispersion equation was generalized using the concept of a [variational order derivative](https://en.wikipedia.org/w/index.php?title=Variational_order_derivative&action=edit&redlink=1 "Variational order derivative (page does not exist)"). The modified equation was numerically solved via the [CrankNicolson method](https://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method "CrankNicolson method"). The stability and convergence in numerical simulations showed that the modified equation is more reliable in predicting the movement of pollution in deformable aquifers than equations with constant fractional and integer derivatives[\[60\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Atangana2014a-61)
### Time-space fractional diffusion equation models
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=24 "Edit section: Time-space fractional diffusion equation models")\]
Anomalous diffusion processes in complex media can be well characterized by using fractional-order diffusion equation models.[\[61\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-62)[\[62\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-63) The time derivative term corresponds to long-time heavy tail decay and the spatial derivative for diffusion nonlocality. The time-space fractional diffusion governing equation can be written as 
A simple extension of the fractional derivative is the variable-order fractional derivative, and are changed into __(_x_, _t_) and __(_x_, _t_). Its applications in anomalous diffusion modeling can be found in the reference.[\[60\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Atangana2014a-61)[\[63\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-64)[\[64\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-65)
### Structural damping models
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=25 "Edit section: Structural damping models")\]
Fractional derivatives are used to model [viscoelastic](https://en.wikipedia.org/wiki/Viscoelastic "Viscoelastic") [damping](https://en.wikipedia.org/wiki/Damping "Damping") in certain types of materials like polymers.[\[12\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Mainardi-13)
Generalizing [PID controllers](https://en.wikipedia.org/wiki/PID_controller "PID controller") to use fractional orders can increase their degree of freedom. The new equation relating the _control variable_ _u_(_t_) in terms of a measured _error value_ _e_(_t_) can be written as 
where and are positive fractional orders and _K_p, _K_i, and _K_d, all non-negative, denote the coefficients for the [proportional](https://en.wikipedia.org/wiki/Proportional_control "Proportional control"), [integral](https://en.wikipedia.org/wiki/Integral "Integral"), and [derivative](https://en.wikipedia.org/wiki/Derivative "Derivative") terms, respectively (sometimes denoted P, I, and D).[\[65\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-66)
### Acoustic wave equations for complex media
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=27 "Edit section: Acoustic wave equations for complex media")\]
The propagation of acoustical waves in complex media, such as in biological tissue, commonly implies attenuation obeying a frequency power-law. This kind of phenomenon may be described using a causal wave equation which incorporates fractional time derivatives: 
See also Holm & Nsholm (2011)[\[66\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-67) and the references therein. Such models are linked to the commonly recognized hypothesis that multiple relaxation phenomena give rise to the attenuation measured in complex media. This link is further described in Nsholm & Holm (2011b)[\[67\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-68) and in the survey paper,[\[68\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Nasholm2-69) as well as the _[Acoustic attenuation](https://en.wikipedia.org/wiki/Acoustic_attenuation "Acoustic attenuation")_ article. See Holm & Nasholm (2013)[\[69\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-HolmNasholm2014-70) for a paper which compares fractional wave equations which model power-law attenuation. This book on power-law attenuation also covers the topic in more detail.[\[70\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Holm2019-71)
Pandey and Holm gave a physical meaning to fractional differential equations by deriving them from physical principles and interpreting the fractional-order in terms of the parameters of the acoustical media, example in fluid-saturated granular unconsolidated marine sediments.[\[71\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Pandey2016-72) Interestingly, Pandey and Holm derived [Lomnitz's law](https://en.wikipedia.org/wiki/Cinna_Lomnitz "Cinna Lomnitz") in [seismology](https://en.wikipedia.org/wiki/Seismology "Seismology") and Nutting's law in [non-Newtonian rheology](https://en.wikipedia.org/wiki/Non-Newtonian_fluid "Non-Newtonian fluid") using the framework of fractional calculus.[\[72\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-73) Nutting's law was used to model the wave propagation in marine sediments using fractional derivatives.[\[71\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-Pandey2016-72)
### Fractional Schrdinger equation in quantum theory
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=28 "Edit section: Fractional Schrdinger equation in quantum theory")\]
The [fractional Schrdinger equation](https://en.wikipedia.org/w/index.php?title=Fractional_Schr%C3%B6dinger_equation&action=edit&redlink=1 "Fractional Schrdinger equation (page does not exist)"), a fundamental equation of [fractional quantum mechanics](https://en.wikipedia.org/w/index.php?title=Fractional_quantum_mechanics&action=edit&redlink=1 "Fractional quantum mechanics (page does not exist)"), has the following form:[\[73\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-74)[\[74\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-75) 
where the solution of the equation is the [wavefunction](https://en.wikipedia.org/wiki/Wavefunction "Wavefunction") __(**r**, _t_) the quantum mechanical [probability amplitude](https://en.wikipedia.org/wiki/Probability_amplitude "Probability amplitude") for the particle to have a given [position vector](https://en.wikipedia.org/wiki/Position_vector "Position vector") **r** at any given time t, and is the [reduced Planck constant](https://en.wikipedia.org/wiki/Reduced_Planck_constant "Reduced Planck constant"). The [potential energy](https://en.wikipedia.org/wiki/Potential_energy "Potential energy") function _V_(**r**, _t_) depends on the system.
Further,  is the [Laplace operator](https://en.wikipedia.org/wiki/Laplace_operator "Laplace operator"), and D is a scale constant with physical [dimension](https://en.wikipedia.org/wiki/Dimensional_analysis "Dimensional analysis") \[_D_\] = J1 __m__s__ = kg1 __m2 __s__ 2, (at __ = 2,  for a particle of mass m), and the operator (__2)__/2 is the 3-dimensional fractional quantum Riesz derivative defined by 
The index in the fractional Schrdinger equation is the Lvy index, 1 < __ 2.
#### Variable-order fractional Schrdinger equation
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=29 "Edit section: Variable-order fractional Schrdinger equation")\]
As a natural generalization of the [fractional Schrdinger equation](https://en.wikipedia.org/w/index.php?title=Fractional_Schr%C3%B6dinger_equation&action=edit&redlink=1 "Fractional Schrdinger equation (page does not exist)"), the variable-order fractional Schrdinger equation has been exploited to study fractional quantum phenomena:[\[75\]](https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-76) 
where  is the [Laplace operator](https://en.wikipedia.org/wiki/Laplace_operator "Laplace operator") and the operator (__2)__(_t_)/2 is the variable-order fractional quantum Riesz derivative.
* [Acoustic attenuation](https://en.wikipedia.org/wiki/Acoustic_attenuation "Acoustic attenuation")
* [Autoregressive fractionally integrated moving average](https://en.wikipedia.org/wiki/Autoregressive_fractionally_integrated_moving_average "Autoregressive fractionally integrated moving average")
* [Initialized fractional calculus](https://en.wikipedia.org/wiki/Initialized_fractional_calculus "Initialized fractional calculus")
* [Nonlocal operator](https://en.wikipedia.org/wiki/Nonlocal_operator "Nonlocal operator")
### Other fractional theories
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=31 "Edit section: Other fractional theories")\]
* [Fractional-order system](https://en.wikipedia.org/wiki/Fractional-order_system "Fractional-order system")
* [Fractional Fourier transform](https://en.wikipedia.org/wiki/Fractional_Fourier_transform "Fractional Fourier transform")
* [Prabhakar function](https://en.wikipedia.org/wiki/Prabhakar_function "Prabhakar function")
1. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Zwillinger2014_2-0)** Daniel Zwillinger (12 May 2014). [_Handbook of Differential Equations_](https://books.google.com/books?id=9QLjBQAAQBAJ). Elsevier Science. [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-1-4832-2096-3](https://en.wikipedia.org/wiki/Special:BookSources/978-1-4832-2096-3 "Special:BookSources/978-1-4832-2096-3").
2. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Derivative_3-0)** Katugampola, Udita N. (15 October 2014). ["A New Approach To Generalized Fractional Derivatives"](https://www.emis.de/journals/BMAA/repository/docs/BMAA6-4-1.pdf) (PDF). _Bulletin of Mathematical Analysis and Applications_. **6** (4): 115\. [arXiv](https://en.wikipedia.org/wiki/ArXiv_(identifier) "ArXiv (identifier)"):[1106.0965](https://arxiv.org/abs/1106.0965).
3. ^ [_**a**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-:1_4-0) [_**b**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-:1_4-1) Miller, Kenneth S.; Ross, Bertram (1993). _An Introduction to the Fractional Calculus and Fractional Differential Equations_. New York: Wiley. pp.12\. [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-0-471-58884-9](https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-58884-9 "Special:BookSources/978-0-471-58884-9").
4. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-5)** Niels Henrik Abel (1823). ["Oplsning af et Par Opgaver ved Hjelp af bestemte Integraler (Solution de quelques problmes l'aide d'intgrales dfinies, Solution of a couple of problems by means of definite integrals)"](https://abelprize.no/sites/default/files/2021-04/Magazin_for_Naturvidenskaberne_oplosning_av_et_par1_opt.pdf) (PDF). _Magazin for Naturvidenskaberne_. Kristiania (Oslo): 5568.
5. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-6)** Podlubny, Igor; Magin, Richard L.; Trymorush, Irina (2017). "Niels Henrik Abel and the birth of fractional calculus". _Fractional Calculus and Applied Analysis_. **20** (5): 10681075\. [arXiv](https://en.wikipedia.org/wiki/ArXiv_(identifier) "ArXiv (identifier)"):[1802.05441](https://arxiv.org/abs/1802.05441). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1515/fca-2017-0057](https://doi.org/10.1515%2Ffca-2017-0057). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[119664694](https://api.semanticscholar.org/CorpusID:119664694).
6. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-7)** [Liouville, Joseph](https://en.wikipedia.org/wiki/Joseph_Liouville "Joseph Liouville") (1832), ["Mmoire sur quelques questions de gomtrie et de mcanique, et sur un nouveau genre de calcul pour rsoudre ces questions"](https://gallica.bnf.fr/ark:/12148/bpt6k4336778/f2.item.r=Joseph%20Liouville), _Journal de l'cole Polytechnique_, **13**, Paris: 169.
7. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-8)** [Liouville, Joseph](https://en.wikipedia.org/wiki/Joseph_Liouville "Joseph Liouville") (1832), ["Mmoire sur le calcul des diffrentielles indices quelconques"](https://gallica.bnf.fr/ark:/12148/bpt6k4336778/f72.image), _Journal de l'cole Polytechnique_, **13**, Paris: 71162.
8. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-9)** For the history of the subject, see the thesis (in French): Stphane Dugowson, [_Les diffrentielles mtaphysiques_](http://s.dugowson.free.fr/recherche/dones/index.html) (_histoire et philosophie de la gnralisation de l'ordre de drivation_), Thse, Universit Paris Nord (1994)
9. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-10)** For a historical review of the subject up to the beginning of the 20th century, see: Bertram Ross (1977). "The development of fractional calculus 16951900". _Historia Mathematica_. **4**: 7589\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1016/0315-0860(77)90039-8](https://doi.org/10.1016%2F0315-0860%2877%2990039-8). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[122146887](https://api.semanticscholar.org/CorpusID:122146887).
10. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-11)** Valrio, Duarte; Machado, Jos; [Kiryakova, Virginia](https://en.wikipedia.org/wiki/Virginia_Kiryakova "Virginia Kiryakova") (2014-01-01). "Some pioneers of the applications of fractional calculus". _Fractional Calculus and Applied Analysis_. **17** (2): 552578\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.2478/s13540-014-0185-1](https://doi.org/10.2478%2Fs13540-014-0185-1). [hdl](https://en.wikipedia.org/wiki/Hdl_(identifier) "Hdl (identifier)"):[10400.22/5491](https://hdl.handle.net/10400.22%2F5491). [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[1314-2224](https://search.worldcat.org/issn/1314-2224). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[121482200](https://api.semanticscholar.org/CorpusID:121482200).
11. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-12)** Hermann, Richard (2014). _Fractional Calculus: An Introduction for Physicists_ (2nded.). New Jersey: World Scientific Publishing. p.46\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2014fcip.book.....H](https://ui.adsabs.harvard.edu/abs/2014fcip.book.....H). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1142/8934](https://doi.org/10.1142%2F8934). [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-981-4551-07-6](https://en.wikipedia.org/wiki/Special:BookSources/978-981-4551-07-6 "Special:BookSources/978-981-4551-07-6").
12. ^ [_**a**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Mainardi_13-0) [_**b**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Mainardi_13-1) Mainardi, Francesco (May 2010). _Fractional Calculus and Waves in Linear Viscoelasticity_. [Imperial College Press](https://en.wikipedia.org/wiki/Imperial_College_Press "Imperial College Press"). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1142/p614](https://doi.org/10.1142%2Fp614). [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-1-84816-329-4](https://en.wikipedia.org/wiki/Special:BookSources/978-1-84816-329-4 "Special:BookSources/978-1-84816-329-4"). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[118719247](https://api.semanticscholar.org/CorpusID:118719247).
13. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-14)** Hadamard, J. (1892). ["Essai sur l'tude des fonctions donnes par leur dveloppement de Taylor"](http://sites.mathdoc.fr/JMPA/PDF/JMPA_1892_4_8_A4_0.pdf) (PDF). _Journal de Mathmatiques Pures et Appliques_. **4** (8): 101186.
14. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-15)** Kilbas, A. Anatolii Aleksandrovich; Srivastava, Hari Mohan; Trujillo, Juan J. (2006). [_Theory And Applications of Fractional Differential Equations_](https://books.google.com/books?id=LhkO83ZioQkC). Elsevier. p.[75 (Property 2.4)](https://books.google.com/books?id=LhkO83ZioQkC&pg=PA75). [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-0-444-51832-3](https://en.wikipedia.org/wiki/Special:BookSources/978-0-444-51832-3 "Special:BookSources/978-0-444-51832-3").
15. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Mostafanejad_16-0)** Mostafanejad, Mohammad (2021). ["Fractional paradigms in quantum chemistry"](https://doi.org/10.1002%2Fqua.26762). _International Journal of Quantum Chemistry_. **121** (20). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1002/qua.26762](https://doi.org/10.1002%2Fqua.26762).
16. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Al-Raeei_17-0)** Al-Raeei, Marwan (2021). ["Applying fractional quantum mechanics to systems with electrical screening effects"](https://www.sciencedirect.com/science/article/abs/pii/S0960077921005634). _Chaos, Solitons & Fractals_. **150** (September): 111209. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2021CSF...15011209A](https://ui.adsabs.harvard.edu/abs/2021CSF...15011209A). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1016/j.chaos.2021.111209](https://doi.org/10.1016%2Fj.chaos.2021.111209).
17. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-18)** Herrmann, Richard, ed. (2014). _Fractional Calculus: An Introduction for Physicists_ (2nded.). New Jersey: World Scientific Publishing Co. p.[54](https://books.google.com/books?id=60S7CgAAQBAJ&pg=PA54)\[_[verification needed](https://en.wikipedia.org/wiki/Wikipedia:Verifiability "Wikipedia:Verifiability")_\]. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2014fcip.book.....H](https://ui.adsabs.harvard.edu/abs/2014fcip.book.....H). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1142/8934](https://doi.org/10.1142%2F8934). [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-981-4551-07-6](https://en.wikipedia.org/wiki/Special:BookSources/978-981-4551-07-6 "Special:BookSources/978-981-4551-07-6").
18. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-19)** Caputo, Michele (1967). ["Linear model of dissipation whose _Q_ is almost frequency independent. II"](https://doi.org/10.1111%2Fj.1365-246x.1967.tb02303.x). _Geophysical Journal International_. **13** (5): 529539\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[1967GeoJ...13..529C](https://ui.adsabs.harvard.edu/abs/1967GeoJ...13..529C). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1111/j.1365-246x.1967.tb02303.x](https://doi.org/10.1111%2Fj.1365-246x.1967.tb02303.x)..
19. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-20)** Caputo, Michele; Fabrizio, Mauro (2015). ["A new Definition of Fractional Derivative without Singular Kernel"](https://www.naturalspublishing.com/ContIss.asp?IssID=255). _Progress in Fractional Differentiation and Applications_. **1** (2): 7385. Retrieved 7 August 2020.
20. ^ [_**a**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Algahtani2016_21-0) [_**b**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Algahtani2016_21-1) [_**c**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Algahtani2016_21-2) Algahtani, Obaid Jefain Julaighim (2016-08-01). ["Comparing the AtanganaBaleanu and CaputoFabrizio derivative with fractional order: Allen Cahn model"](https://www.sciencedirect.com/science/article/abs/pii/S0960077916301059). _Chaos, Solitons & Fractals_. Nonlinear Dynamics and Complexity. **89**: 552559\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2016CSF....89..552A](https://ui.adsabs.harvard.edu/abs/2016CSF....89..552A). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1016/j.chaos.2016.03.026](https://doi.org/10.1016%2Fj.chaos.2016.03.026). [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[0960-0779](https://search.worldcat.org/issn/0960-0779).
21. ^ [_**a**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-doiserbia.nb.rs_22-0) [_**b**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-doiserbia.nb.rs_22-1) Atangana, Abdon; Baleanu, Dumitru (2016). ["New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model"](http://www.doiserbia.nb.rs/Article.aspx?ID=0354-98361600018A). _Thermal Science_. **20** (2): 763769\. [arXiv](https://en.wikipedia.org/wiki/ArXiv_(identifier) "ArXiv (identifier)"):[1602.03408](https://arxiv.org/abs/1602.03408). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.2298/TSCI160111018A](https://doi.org/10.2298%2FTSCI160111018A). [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[0354-9836](https://search.worldcat.org/issn/0354-9836).
22. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-23)** Chen, YangQuan; Li, Changpin; Ding, Hengfei (22 May 2014). ["High-Order Algorithms for Riesz Derivative and Their Applications"](https://doi.org/10.1155%2F2014%2F653797). _[Abstract and Applied Analysis](https://en.wikipedia.org/wiki/Abstract_and_Applied_Analysis "Abstract and Applied Analysis")_. **2014**: 117\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1155/2014/653797](https://doi.org/10.1155%2F2014%2F653797).
23. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-24)** Bayn, Seluk . (5 December 2016). "Definition of the Riesz derivative and its application to space fractional quantum mechanics". _Journal of Mathematical Physics_. **57** (12): 123501. [arXiv](https://en.wikipedia.org/wiki/ArXiv_(identifier) "ArXiv (identifier)"):[1612.03046](https://arxiv.org/abs/1612.03046). [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2016JMP....57l3501B](https://ui.adsabs.harvard.edu/abs/2016JMP....57l3501B). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1063/1.4968819](https://doi.org/10.1063%2F1.4968819). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[119099201](https://api.semanticscholar.org/CorpusID:119099201).
24. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-25)** Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. (2014-07-01). ["A new definition of fractional derivative"](https://www.sciencedirect.com/science/article/pii/S0377042714000065). _Journal of Computational and Applied Mathematics_. **264**: 6570\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1016/j.cam.2014.01.002](https://doi.org/10.1016%2Fj.cam.2014.01.002). [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[0377-0427](https://search.worldcat.org/issn/0377-0427).
25. ^ [_**a**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-:0_26-0) [_**b**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-:0_26-1) [_**c**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-:0_26-2) Gao, Feng; Chi, Chunmei (2020). ["Improvement on Conformable Fractional Derivative and Its Applications in Fractional Differential Equations"](https://doi.org/10.1155%2F2020%2F5852414). _Journal of Function Spaces_. **2020** (1): 5852414. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1155/2020/5852414](https://doi.org/10.1155%2F2020%2F5852414). [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[2314-8888](https://search.worldcat.org/issn/2314-8888).
26. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-27)** Hasanah, Dahliatul (2022-10-31). ["On continuity properties of the improved conformable fractional derivatives"](http://mail.fourier.or.id/index.php/FOURIER/article/view/176). _Jurnal Fourier_. **11** (2): 8896\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.14421/fourier.2022.112.88-96](https://doi.org/10.14421%2Ffourier.2022.112.88-96). [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[2541-5239](https://search.worldcat.org/issn/2541-5239).
27. ^ [_**a**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-deOliveira2014_28-0) [_**b**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-deOliveira2014_28-1) [_**c**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-deOliveira2014_28-2) [_**d**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-deOliveira2014_28-3) [_**e**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-deOliveira2014_28-4) [_**f**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-deOliveira2014_28-5) [_**g**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-deOliveira2014_28-6) [_**h**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-deOliveira2014_28-7) [_**i**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-deOliveira2014_28-8) [_**j**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-deOliveira2014_28-9) [_**k**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-deOliveira2014_28-10) [_**l**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-deOliveira2014_28-11) de Oliveira, Edmundo Capelas; Tenreiro Machado, Jos Antnio (2014-06-10). ["A Review of Definitions for Fractional Derivatives and Integral"](https://doi.org/10.1155%2F2014%2F238459). _Mathematical Problems in Engineering_. **2014**: 16\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1155/2014/238459](https://doi.org/10.1155%2F2014%2F238459). [hdl](https://en.wikipedia.org/wiki/Hdl_(identifier) "Hdl (identifier)"):[10400.22/5497](https://hdl.handle.net/10400.22%2F5497).
28. ^ [_**a**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Aslan2015_29-0) [_**b**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Aslan2015_29-1) [_**c**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Aslan2015_29-2) Aslan, smail (2015-01-15). "An analytic approach to a class of fractional differential-difference equations of rational type via symbolic computation". _Mathematical Methods in the Applied Sciences_. **38** (1): 2736\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2015MMAS...38...27A](https://ui.adsabs.harvard.edu/abs/2015MMAS...38...27A). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1002/mma.3047](https://doi.org/10.1002%2Fmma.3047). [hdl](https://en.wikipedia.org/wiki/Hdl_(identifier) "Hdl (identifier)"):[11147/5562](https://hdl.handle.net/11147%2F5562). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[120881978](https://api.semanticscholar.org/CorpusID:120881978).
29. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-30)** Ma, Li; Li, Changpin (2017-05-11). "On hadamard fractional calculus". _Fractals_. **25** (3): 17500332980\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2017Fract..2550033M](https://ui.adsabs.harvard.edu/abs/2017Fract..2550033M). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1142/S0218348X17500335](https://doi.org/10.1142%2FS0218348X17500335). [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[0218-348X](https://search.worldcat.org/issn/0218-348X).
30. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-31)** Miller, Kenneth S. (1975). "The Weyl fractional calculus". In Ross, Bertram (ed.). _Fractional Calculus and Its Applications: Proceedings of the International Conference Held at the University of New Haven, June 1974_. Lecture Notes in Mathematics. Vol.457\. Springer. pp.8089\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1007/bfb0067098](https://doi.org/10.1007%2Fbfb0067098). [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-3-540-69975-0](https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-69975-0 "Special:BookSources/978-3-540-69975-0").
31. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-32)** Ferrari, Fausto (January 2018). ["Weyl and Marchaud Derivatives: A Forgotten History"](https://doi.org/10.3390%2Fmath6010006). _Mathematics_. **6** (1): 6. [arXiv](https://en.wikipedia.org/wiki/ArXiv_(identifier) "ArXiv (identifier)"):[1711.08070](https://arxiv.org/abs/1711.08070). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.3390/math6010006](https://doi.org/10.3390%2Fmath6010006).
32. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Ali_33-0)** Khalili Golmankhaneh, Alireza (2022). [_Fractal Calculus and its Applications_](https://worldscientific.com/worldscibooks/10.1142/12988#t=aboutBook). Singapore: World Scientific Pub Co Inc. p.328\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1142/12988](https://doi.org/10.1142%2F12988). [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-981-126-110-7](https://en.wikipedia.org/wiki/Special:BookSources/978-981-126-110-7 "Special:BookSources/978-981-126-110-7"). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[248575991](https://api.semanticscholar.org/CorpusID:248575991).
33. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-34)** Anderson, Douglas R.; Ulness, Darin J. (2015-06-01). "Properties of the Katugampola fractional derivative with potential application in quantum mechanics". _Journal of Mathematical Physics_. **56** (6): 063502. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2015JMP....56f3502A](https://ui.adsabs.harvard.edu/abs/2015JMP....56f3502A). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1063/1.4922018](https://doi.org/10.1063%2F1.4922018). [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[0022-2488](https://search.worldcat.org/issn/0022-2488).
34. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-35)** Caputo, Michele; Fabrizio, Mauro (2016-01-01). "Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels". _Progress in Fractional Differentiation and Applications_. **2** (1): 111\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.18576/pfda/020101](https://doi.org/10.18576%2Fpfda%2F020101). [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[2356-9336](https://search.worldcat.org/issn/2356-9336).
35. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-36)** C. F. M. Coimbra (2003) Mechanics with Variable Order Differential Equations, Annalen der Physik (12), No. 11-12, pp. 692-703.
36. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-37)** L. E. S. Ramirez, and C. F. M. Coimbra (2007) A Variable Order Constitutive Relation for Viscoelasticity Annalen der Physik (16) 7-8, pp. 543-552.
37. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-38)** H. T. C. Pedro, M. H. Kobayashi, J. M. C. Pereira, and C. F. M. Coimbra (2008) Variable Order Modeling of Diffusive-Convective Effects on the Oscillatory Flow Past a Sphere Journal of Vibration and Control, (14) 9-10, pp. 1569-1672.
38. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-39)** G. Diaz, and C. F. M. Coimbra (2009) Nonlinear Dynamics and Control of a Variable Order Oscillator with Application to the van der Pol Equation Nonlinear Dynamics, 56, pp. 145157.
39. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-40)** L. E. S. Ramirez, and C. F. M. Coimbra (2010) On the Selection and Meaning of Variable Order Operators for Dynamic Modeling International Journal of Differential Equations Vol. 2010, Article ID 846107.
40. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-41)** L. E. S. Ramirez and C. F. M. Coimbra (2011) On the Variable Order Dynamics of the Nonlinear Wake Caused by a Sedimenting Particle, Physica D (240) 13, pp. 1111-1118.
41. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-42)** E. A. Lim, M. H. Kobayashi and C. F. M. Coimbra (2014) Fractional Dynamics of Tethered Particles in Oscillatory Stokes Flows, Journal of Fluid Mechanics (746) pp. 606-625.
42. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-43)** J. Orosco and C. F. M. Coimbra (2016) On the Control and Stability of Variable Order Mechanical Systems Nonlinear Dynamics, (86:1), pp. 695710.
43. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-44)** E. C. de Oliveira, J. A. Tenreiro Machado (2014), "A Review of Definitions for Fractional Derivatives and Integral", Mathematical Problems in Engineering, vol. 2014, Article ID 238459.
44. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-45)** S. Shen, F. Liu, J. Chen, I. Turner, and V. Anh (2012) "Numerical techniques for the variable order time fractional diffusion equation" Applied Mathematics and Computation Volume 218, Issue 22, pp. 10861-10870.
45. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-46)** H. Zhang and S. Shen, "The Numerical Simulation of Space-Time Variable Fractional Order Diffusion Equation," Numer. Math. Theor. Meth. Appl. Vol. 6, No. 4, pp. 571-585.
46. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-47)** H. Zhang, F. Liu, M. S. Phanikumar, and M. M. Meerschaert (2013) "A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model," Computers & Mathematics with Applications, 66, issue 5, pp. 693701.
47. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-48)** C. F. M. Coimbra Methods of using generalized order differentiation and integration of input variables to forecast trends," U.S. Patent Application 13,641,083 (2013).
48. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-49)** J. Orosco and C. F. M. Coimbra (2018) Variable-order Modeling of Nonlocal Emergence in Many-body Systems: Application to Radiative Dispersion, Physical Review E (98), 032208.
49. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-50)** ["Fractional Calculus"](http://www.mathpages.com/home/kmath616/kmath616.htm.htm). _MathPages.com_.
50. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-51)** [Erdlyi, Arthur](https://en.wikipedia.org/wiki/Arthur_Erd%C3%A9lyi "Arthur Erdlyi") (19501951). "On some functional transformations". _Rendiconti del Seminario Matematico dell'Universit e del Politecnico di Torino_. **10**: 217234\. [MR](https://en.wikipedia.org/wiki/MR_(identifier) "MR (identifier)")[0047818](https://mathscinet.ams.org/mathscinet-getitem?mr=0047818).
51. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-52)** Kober, Hermann (1940). "On fractional integrals and derivatives". _The Quarterly Journal of Mathematics_. os-11 (1): 193211\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[1940QJMat..11..193K](https://ui.adsabs.harvard.edu/abs/1940QJMat..11..193K). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1093/qmath/os-11.1.193](https://doi.org/10.1093%2Fqmath%2Fos-11.1.193).
52. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-53)** Wheatcraft, Stephen W.; Meerschaert, Mark M. (October 2008). ["Fractional conservation of mass"](https://www.stt.msu.edu/users/mcubed/fCOM.pdf) (PDF). _Advances in Water Resources_. **31** (10): 13771381\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2008AdWR...31.1377W](https://ui.adsabs.harvard.edu/abs/2008AdWR...31.1377W). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1016/j.advwatres.2008.07.004](https://doi.org/10.1016%2Fj.advwatres.2008.07.004). [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[0309-1708](https://search.worldcat.org/issn/0309-1708).
53. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-54)** Oldham, K. B. _Analytical Chemistry_ 44(1) **1972** 196-198.
54. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-55)** Pospil, L. et al. _Electrochimica Acta_ 300 **2019** 284-289.
55. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-56)** Atangana, Abdon; Bildik, Necdet (2013). ["The Use of Fractional Order Derivative to Predict the Groundwater Flow"](https://doi.org/10.1155%2F2013%2F543026). _Mathematical Problems in Engineering_. **2013**: 19\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1155/2013/543026](https://doi.org/10.1155%2F2013%2F543026).
56. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-57)** Atangana, Abdon; Vermeulen, P. D. (2014). ["Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow Equation"](https://doi.org/10.1155%2F2014%2F381753). _Abstract and Applied Analysis_. **2014**: 111\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1155/2014/381753](https://doi.org/10.1155%2F2014%2F381753).
57. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-58)** Benson, D.; Wheatcraft, S.; Meerschaert, M. (2000). "Application of a fractional advection-dispersion equation". _Water Resources Research_. **36** (6): 14031412\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2000WRR....36.1403B](https://ui.adsabs.harvard.edu/abs/2000WRR....36.1403B). [CiteSeerX](https://en.wikipedia.org/wiki/CiteSeerX_(identifier) "CiteSeerX (identifier)")[10.1.1.1.4838](https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.4838). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1029/2000wr900031](https://doi.org/10.1029%2F2000wr900031). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[7669161](https://api.semanticscholar.org/CorpusID:7669161).
58. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-59)** Benson, D.; Wheatcraft, S.; Meerschaert, M. (2000). ["The fractional-order governing equation of Lvy motion"](https://doi.org/10.1029%2F2000wr900032). _Water Resources Research_. **36** (6): 14131423\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2000WRR....36.1413B](https://ui.adsabs.harvard.edu/abs/2000WRR....36.1413B). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1029/2000wr900032](https://doi.org/10.1029%2F2000wr900032). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[16579630](https://api.semanticscholar.org/CorpusID:16579630).
59. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-60)** Wheatcraft, Stephen W.; Meerschaert, Mark M.; Schumer, Rina; Benson, David A. (2001-01-01). "Fractional Dispersion, Lvy Motion, and the MADE Tracer Tests". _[Transport in Porous Media](https://en.wikipedia.org/w/index.php?title=Transport_in_Porous_Media&action=edit&redlink=1 "Transport in Porous Media (page does not exist)")_. **42** (12): 211240\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2001TPMed..42..211B](https://ui.adsabs.harvard.edu/abs/2001TPMed..42..211B). [CiteSeerX](https://en.wikipedia.org/wiki/CiteSeerX_(identifier) "CiteSeerX (identifier)")[10.1.1.58.2062](https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.2062). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1023/A:1006733002131](https://doi.org/10.1023%2FA%3A1006733002131). [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[1573-1634](https://search.worldcat.org/issn/1573-1634). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[189899853](https://api.semanticscholar.org/CorpusID:189899853).
60. ^ [_**a**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Atangana2014a_61-0) [_**b**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Atangana2014a_61-1) Atangana, Abdon; Kilicman, Adem (2014). ["On the Generalized Mass Transport Equation to the Concept of Variable Fractional Derivative"](https://doi.org/10.1155%2F2014%2F542809). _Mathematical Problems in Engineering_. **2014**: 9. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1155/2014/542809](https://doi.org/10.1155%2F2014%2F542809).
61. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-62)** Metzler, R.; Klafter, J. (2000). "The random walk's guide to anomalous diffusion: a fractional dynamics approach". _Phys. Rep_. **339** (1): 177\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2000PhR...339....1M](https://ui.adsabs.harvard.edu/abs/2000PhR...339....1M). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1016/s0370-1573(00)00070-3](https://doi.org/10.1016%2Fs0370-1573%2800%2900070-3).
62. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-63)** Mainardi, F.; [Luchko, Y.](https://en.wikipedia.org/wiki/Yuri_Luchko "Yuri Luchko"); Pagnini, G. (2001). "The fundamental solution of the space-time fractional diffusion equation". _Fractional Calculus and Applied Analysis_. **4** (2): 153192\. [arXiv](https://en.wikipedia.org/wiki/ArXiv_(identifier) "ArXiv (identifier)"):[cond-mat/0702419](https://arxiv.org/abs/cond-mat/0702419). [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2007cond.mat..2419M](https://ui.adsabs.harvard.edu/abs/2007cond.mat..2419M).
63. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-64)** Gorenflo, Rudolf; Mainardi, Francesco (2007). "Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk". In Rangarajan, G.; Ding, M. (eds.). _Processes with Long-Range Correlations_. Lecture Notes in Physics. Vol.621\. pp.148166\. [arXiv](https://en.wikipedia.org/wiki/ArXiv_(identifier) "ArXiv (identifier)"):[0709.3990](https://arxiv.org/abs/0709.3990). [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2003LNP...621..148G](https://ui.adsabs.harvard.edu/abs/2003LNP...621..148G). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1007/3-540-44832-2\_8](https://doi.org/10.1007%2F3-540-44832-2_8). [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-3-540-40129-2](https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-40129-2 "Special:BookSources/978-3-540-40129-2"). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[14946568](https://api.semanticscholar.org/CorpusID:14946568).
64. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-65)** Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan (2017). ["Scaling laws of passive-scalar diffusion in the interstellar medium"](https://doi.org/10.1093%2Fmnras%2Fstx261). _[Monthly Notices of the Royal Astronomical Society](https://en.wikipedia.org/wiki/Monthly_Notices_of_the_Royal_Astronomical_Society "Monthly Notices of the Royal Astronomical Society")_. **467** (2): 24212429\. [arXiv](https://en.wikipedia.org/wiki/ArXiv_(identifier) "ArXiv (identifier)"):[1610.06590](https://arxiv.org/abs/1610.06590). [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2017MNRAS.467.2421C](https://ui.adsabs.harvard.edu/abs/2017MNRAS.467.2421C). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1093/mnras/stx261](https://doi.org/10.1093%2Fmnras%2Fstx261). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[20203131](https://api.semanticscholar.org/CorpusID:20203131).
65. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-66)** Tenreiro Machado, J. A.; Silva, Manuel F.; Barbosa, Ramiro S.; Jesus, Isabel S.; Reis, Ceclia M.; Marcos, Maria G.; Galhano, Alexandra F. (2010). ["Some Applications of Fractional Calculus in Engineering"](https://doi.org/10.1155%2F2010%2F639801). _[Mathematical Problems in Engineering](https://en.wikipedia.org/wiki/Mathematical_Problems_in_Engineering "Mathematical Problems in Engineering")_. **2010**: 134\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1155/2010/639801](https://doi.org/10.1155%2F2010%2F639801). [hdl](https://en.wikipedia.org/wiki/Hdl_(identifier) "Hdl (identifier)"):[10400.22/13143](https://hdl.handle.net/10400.22%2F13143).
66. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-67)** Holm, S.; Nsholm, S. P. (2011). "A causal and fractional all-frequency wave equation for lossy media". _Journal of the Acoustical Society of America_. **130** (4): 21952201\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2011ASAJ..130.2195H](https://ui.adsabs.harvard.edu/abs/2011ASAJ..130.2195H). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1121/1.3631626](https://doi.org/10.1121%2F1.3631626). [hdl](https://en.wikipedia.org/wiki/Hdl_(identifier) "Hdl (identifier)"):[10852/103311](https://hdl.handle.net/10852%2F103311). [PMID](https://en.wikipedia.org/wiki/PMID_(identifier) "PMID (identifier)")[21973374](https://pubmed.ncbi.nlm.nih.gov/21973374). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[7804006](https://api.semanticscholar.org/CorpusID:7804006).
67. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-68)** Nsholm, S. P.; Holm, S. (2011). "Linking multiple relaxation, power-law attenuation, and fractional wave equations". _Journal of the Acoustical Society of America_. **130** (5): 30383045\. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2011ASAJ..130.3038N](https://ui.adsabs.harvard.edu/abs/2011ASAJ..130.3038N). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1121/1.3641457](https://doi.org/10.1121%2F1.3641457). [hdl](https://en.wikipedia.org/wiki/Hdl_(identifier) "Hdl (identifier)"):[10852/103312](https://hdl.handle.net/10852%2F103312). [PMID](https://en.wikipedia.org/wiki/PMID_(identifier) "PMID (identifier)")[22087931](https://pubmed.ncbi.nlm.nih.gov/22087931). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[10376751](https://api.semanticscholar.org/CorpusID:10376751).
68. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Nasholm2_69-0)** Nsholm, S. P.; Holm, S. (2012). "On a Fractional Zener Elastic Wave Equation". _Fract. Calc. Appl. Anal_. **16**: 2650\. [arXiv](https://en.wikipedia.org/wiki/ArXiv_(identifier) "ArXiv (identifier)"):[1212.4024](https://arxiv.org/abs/1212.4024). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.2478/s13540-013-0003-1](https://doi.org/10.2478%2Fs13540-013-0003-1). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[120348311](https://api.semanticscholar.org/CorpusID:120348311).
69. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-HolmNasholm2014_70-0)** Holm, S.; Nsholm, S. P. (2013). "Comparison of fractional wave equations for power law attenuation in ultrasound and elastography". _Ultrasound in Medicine & Biology_. **40** (4): 695703\. [arXiv](https://en.wikipedia.org/wiki/ArXiv_(identifier) "ArXiv (identifier)"):[1306.6507](https://arxiv.org/abs/1306.6507). [CiteSeerX](https://en.wikipedia.org/wiki/CiteSeerX_(identifier) "CiteSeerX (identifier)")[10.1.1.765.120](https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.765.120). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1016/j.ultrasmedbio.2013.09.033](https://doi.org/10.1016%2Fj.ultrasmedbio.2013.09.033). [PMID](https://en.wikipedia.org/wiki/PMID_(identifier) "PMID (identifier)")[24433745](https://pubmed.ncbi.nlm.nih.gov/24433745). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[11983716](https://api.semanticscholar.org/CorpusID:11983716).
70. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Holm2019_71-0)** Holm, S. (2019). [_Waves with Power-Law Attenuation_](https://link.springer.com/book/10.1007/978-3-030-14927-7). Springer and Acoustical Society of America Press. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2019wpla.book.....H](https://ui.adsabs.harvard.edu/abs/2019wpla.book.....H). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1007/978-3-030-14927-7](https://doi.org/10.1007%2F978-3-030-14927-7). [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-3-030-14926-0](https://en.wikipedia.org/wiki/Special:BookSources/978-3-030-14926-0 "Special:BookSources/978-3-030-14926-0"). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[145880744](https://api.semanticscholar.org/CorpusID:145880744).
71. ^ [_**a**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Pandey2016_72-0) [_**b**_](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-Pandey2016_72-1) Pandey, Vikash; Holm, Sverre (2016-12-01). "Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations". _The Journal of the Acoustical Society of America_. **140** (6): 42254236\. [arXiv](https://en.wikipedia.org/wiki/ArXiv_(identifier) "ArXiv (identifier)"):[1612.05557](https://arxiv.org/abs/1612.05557). [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2016ASAJ..140.4225P](https://ui.adsabs.harvard.edu/abs/2016ASAJ..140.4225P). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1121/1.4971289](https://doi.org/10.1121%2F1.4971289). [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[0001-4966](https://search.worldcat.org/issn/0001-4966). [PMID](https://en.wikipedia.org/wiki/PMID_(identifier) "PMID (identifier)")[28039990](https://pubmed.ncbi.nlm.nih.gov/28039990). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[29552742](https://api.semanticscholar.org/CorpusID:29552742).
72. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-73)** Pandey, Vikash; Holm, Sverre (2016-09-23). ["Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity"](https://doi.org/10.1103%2FPhysRevE.94.032606). _Physical Review E_. **94** (3): 032606. [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2016PhRvE..94c2606P](https://ui.adsabs.harvard.edu/abs/2016PhRvE..94c2606P). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1103/PhysRevE.94.032606](https://doi.org/10.1103%2FPhysRevE.94.032606). [hdl](https://en.wikipedia.org/wiki/Hdl_(identifier) "Hdl (identifier)"):[10852/53091](https://hdl.handle.net/10852%2F53091). [PMID](https://en.wikipedia.org/wiki/PMID_(identifier) "PMID (identifier)")[27739858](https://pubmed.ncbi.nlm.nih.gov/27739858).
73. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-74)** Laskin, N. (2002). "Fractional Schrodinger equation". _Phys. Rev. E_. **66** (5): 056108. [arXiv](https://en.wikipedia.org/wiki/ArXiv_(identifier) "ArXiv (identifier)"):[quant-ph/0206098](https://arxiv.org/abs/quant-ph/0206098). [Bibcode](https://en.wikipedia.org/wiki/Bibcode_(identifier) "Bibcode (identifier)"):[2002PhRvE..66e6108L](https://ui.adsabs.harvard.edu/abs/2002PhRvE..66e6108L). [CiteSeerX](https://en.wikipedia.org/wiki/CiteSeerX_(identifier) "CiteSeerX (identifier)")[10.1.1.252.6732](https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.252.6732). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1103/PhysRevE.66.056108](https://doi.org/10.1103%2FPhysRevE.66.056108). [PMID](https://en.wikipedia.org/wiki/PMID_(identifier) "PMID (identifier)")[12513557](https://pubmed.ncbi.nlm.nih.gov/12513557). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[7520956](https://api.semanticscholar.org/CorpusID:7520956).
74. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-75)** Laskin, Nick (2018). _Fractional Quantum Mechanics_. [CiteSeerX](https://en.wikipedia.org/wiki/CiteSeerX_(identifier) "CiteSeerX (identifier)")[10.1.1.247.5449](https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.247.5449). [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1142/10541](https://doi.org/10.1142%2F10541). [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-981-322-379-0](https://en.wikipedia.org/wiki/Special:BookSources/978-981-322-379-0 "Special:BookSources/978-981-322-379-0").
75. **[^](https://en.wikipedia.org/wiki/Fractional_calculus#cite_ref-76)** Bhrawy, A.H.; Zaky, M.A. (2017). "An improved collocation method for multi-dimensional spacetime variable-order fractional Schrdinger equations". _Applied Numerical Mathematics_. **111**: 197218\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1016/j.apnum.2016.09.009](https://doi.org/10.1016%2Fj.apnum.2016.09.009).
### Articles regarding the history of fractional calculus
\[[edit](https://en.wikipedia.org/w/index.php?title=Fractional_calculus&action=edit§ion=35 "Edit section: Articles regarding the history of fractional calculus")\]
* Debnath, L. (2004). "A brief historical introduction to fractional calculus". _International Journal of Mathematical Education in Science and Technology_. **35** (4): 487501\. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1080/00207390410001686571](https://doi.org/10.1080%2F00207390410001686571). [S2CID](https://en.wikipedia.org/wiki/S2CID_(identifier) "S2CID (identifier)")[122198977](https://api.semanticscholar.org/CorpusID:122198977).
* Miller, Kenneth S.; Ross, Bertram, eds. (1993). _An Introduction to the Fractional Calculus and Fractional Differential Equations_. John Wiley & Sons. [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-0-471-58884-9](https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-58884-9 "Special:BookSources/978-0-471-58884-9").
* Samko, S.; Kilbas, A.A.; Marichev, O. (1993). _Fractional Integrals and Derivatives: Theory and Applications_. Taylor & Francis Books. [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-2-88124-864-1](https://en.wikipedia.org/wiki/Special:BookSources/978-2-88124-864-1 "Special:BookSources/978-2-88124-864-1").
* Carpinteri, A.; Mainardi, F., eds. (1998). _Fractals and Fractional Calculus in Continuum Mechanics_. Springer-Verlag Telos. [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-3-211-82913-4](https://en.wikipedia.org/wiki/Special:BookSources/978-3-211-82913-4 "Special:BookSources/978-3-211-82913-4").
* Igor Podlubny (27 October 1998). [_Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications_](https://books.google.com/books?id=K5FdXohLto0C). Elsevier. [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-0-08-053198-4](https://en.wikipedia.org/wiki/Special:BookSources/978-0-08-053198-4 "Special:BookSources/978-0-08-053198-4").
* Tarasov, V.E. (2010). [_Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media_](https://link.springer.com/book/10.1007/978-3-642-14003-7). Nonlinear Physical Science. Springer. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1007/978-3-642-14003-7](https://doi.org/10.1007%2F978-3-642-14003-7). [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-3-642-14003-7](https://en.wikipedia.org/wiki/Special:BookSources/978-3-642-14003-7 "Special:BookSources/978-3-642-14003-7").
* Li, Changpin; Cai, Min (2019). [_Theory and Numerical Approximations of Fractional Integrals and Derivatives_](https://doi.org/10.1137/1.9781611975888). SIAM. [doi](https://en.wikipedia.org/wiki/Doi_(identifier) "Doi (identifier)"):[10.1137/1.9781611975888](https://doi.org/10.1137%2F1.9781611975888). [ISBN](https://en.wikipedia.org/wiki/ISBN_(identifier) "ISBN (identifier)")[978-1-61197-587-1](https://en.wikipedia.org/wiki/Special:BookSources/978-1-61197-587-1 "Special:BookSources/978-1-61197-587-1").
* [Weisstein, Eric W.](https://en.wikipedia.org/wiki/Eric_W._Weisstein "Eric W. Weisstein") ["Fractional calculus"](https://mathworld.wolfram.com/FractionalCalculus.html). _[MathWorld](https://en.wikipedia.org/wiki/MathWorld "MathWorld")_.
* ["Fractional Calculus"](http://www.mathpages.com/home/kmath616/kmath616.htm.htm). _MathPages.com_.
* [Journal of Fractional Calculus and Applied Analysis](https://www.degruyter.com/journal/key/fca/html) [ISSN](https://en.wikipedia.org/wiki/ISSN_(identifier) "ISSN (identifier)")[1314-2224](https://www.worldcat.org/search?fq=x0:jrnl&q=n2:1314-2224) 2015
* Lorenzo, Carl F.; Hartley, Tom T. (2002). ["Initialized Fractional Calculus"](https://www.techbriefs.com/component/content/article/tb/pub/briefs/information-sciences/2264). _Tech Briefs_. NASA John H. Glenn Research Center.
* Herrmann, Richard (2018). ["GigaHedron"](https://fractionalcalculus.org/). collection of books, articles, preprints, etc.
* Loverro, Adam (2005). ["History, Definitions, and Applications for the Engineer"](https://web.archive.org/web/20051029113800/http://www.nd.edu/~msen/Teaching/UnderRes/FracCalc.pdf) (PDF). [University of Notre Dame](https://en.wikipedia.org/wiki/University_of_Notre_Dame "University of Notre Dame"). Archived from [the original](http://www.nd.edu/~msen/Teaching/UnderRes/FracCalc.pdf) (PDF) on 2005-10-29.