📈

Understanding Transformations and Parent Functions

Dec 9, 2024

Transformations and Parent Functions

Transformations

  • Vertical Stretch:
    • Example: 2f(x) means the graph will be twice as large vertically.
  • Vertical Shrink:
    • Example: 1/2f(x) means the graph will be shorter vertically but the same width.
  • Horizontal Shrink:
    • Example: f(2x) means the period is halved (e.g., from 2Ī€ to Ī€), same height.
  • Horizontal Stretch:
    • Example: f(1/2x) means the period doubles (e.g., from 2Ī€ to 4Ī€), same height.
  • Vertical Shift:
    • f(x)+2 shifts up 2 units.
    • f(x)-2 shifts down 2 units.
  • Horizontal Shift:
    • f(x-2) shifts right 2 units.
    • f(x+2) shifts left 2 units.

Reflections

  • Reflection over x-axis: -f(x) changes positive y-values to negative.
  • Reflection over y-axis: f(-x) mirrors the function over y-axis.
  • Reflection over origin: Combining both above transformations.

Inverse and Reciprocal Functions

  • Inverse Function: Reflects across y=x.
  • Reciprocal Function: 1/f(x); an increasing function becomes decreasing.

Graphs of Parent Functions

Linear Function

  • Equation: y = x
  • Domain/Range: All real numbers
  • End Behavior: As x → ±∞, y → ±∞

Quadratic Function

  • Equation: y = x^2
  • Domain: All real numbers
  • Range: [0, ∞)
  • End Behavior: As x → ±∞, y → ∞](streamdown:incomplete-link)

Cubic Function

  • Equation: y = x^3
  • Domain/Range: All real numbers
  • End Behavior: As x → ±∞, y → ±∞

Absolute Value Function

  • Equation: y = |x|
  • Domain: All real numbers
  • Range: [0, ∞)](streamdown:incomplete-link)

Square Root Function

  • Equation: y = √x
  • Domain/Range: [0, ∞)](streamdown:incomplete-link)

Rational Function

  • Equation: y = 1/x
  • Domain: (-∞, 0) âˆĒ (0, ∞)
  • Range: (-∞, 0) âˆĒ (0, ∞)
  • Asymptotes: Vertical at x = 0, horizontal at y = 0

Exponential Function

  • Equation: y = e^x
  • Domain: All real numbers
  • Range: (0, ∞)
  • Asymptote: Horizontal at y = 0

Logarithmic Function

  • Equation: y = log_b(x)
  • Domain: (0, ∞)
  • Range: All real numbers

Trigonometric Functions

Sine and Cosine

  • Domain: All real numbers
  • Range: [-1, 1]
  • Amplitude: Distance from center to peak

Tangent

  • Domain: Excludes nĪ€/2, n odd integers
  • Range: All real numbers

Cosecant

  • Domain: Excludes multiples of Ī€
  • Range: (-∞, -1] âˆĒ [1, ∞)](streamdown:incomplete-link)

Inverse Trigonometric Functions

Inverse Sine

  • Domain: [-1, 1]
  • Range: [-Ī€/2, Ī€/2]

Inverse Cosine

  • Domain: [-1, 1]
  • Range: [0, Ī€]

Inverse Tangent

  • Domain: All real numbers
  • Range: (-Ī€/2, Ī€/2)
  • Behavior: Approaches horizontal asymptotes at ÂąĪ€/2 as x approaches ±∞