Dec 9, 2024
2f(x) means the graph will be twice as large vertically.1/2f(x) means the graph will be shorter vertically but the same width.f(2x) means the period is halved (e.g., from 2Ī to Ī), same height.f(1/2x) means the period doubles (e.g., from 2Ī to 4Ī), same height.f(x)+2 shifts up 2 units.f(x)-2 shifts down 2 units.f(x-2) shifts right 2 units.f(x+2) shifts left 2 units.-f(x) changes positive y-values to negative.f(-x) mirrors the function over y-axis.y=x.1/f(x); an increasing function becomes decreasing.y = xy = x^2[0, â)y = x^3y = |x|[0, â)](streamdown:incomplete-link)y = âx[0, â)](streamdown:incomplete-link)y = 1/x(-â, 0) âĒ (0, â)(-â, 0) âĒ (0, â)x = 0, horizontal at y = 0y = e^x(0, â)y = 0y = log_b(x)(0, â)[-1, 1]nĪ/2, n odd integersĪ(-â, -1] âĒ [1, â)](streamdown:incomplete-link)[-1, 1][-Ī/2, Ī/2][-1, 1][0, Ī](-Ī/2, Ī/2)ÂąĪ/2 as x approaches Âąâ