Coconote
AI notes
AI voice & video notes
Try for free
📏
Introduction to Calculus and Lines
Sep 23, 2024
Calculus Lecture Notes
Introduction
Official start of Calculus class.
Focus on reviewing Math 2 concepts and basic algebra needed for success in calculus.
Section 0.1: Lines
Key Concepts
Definition of Lines
: Infinite points, require two points to define a line.
Graphing a Line
: Need two points or a point and a slope.
Slope
: Represents how a line rises or falls.
Formula: ( m = \frac{y_2 - y_1}{x_2 - x_1} )
Derived from choosing two points ((x_1, y_1)) and ((x_2, y_2)).
Deriving the Slope Formula
Use coordinates ((x_1, y_1)) and ((x_2, y_2)) for generality.
Rise
: ( y_2 - y_1 )
Run
: ( x_2 - x_1 )
Slope ( m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1} )
Point-Slope Form
Fix one point to derive point-slope form.
Equation
: ( y - y_1 = m(x - x_1) )
Allows plug-and-play for ( x ) to solve for ( y ).
Graphing Lines
Using Point-Slope and Slope-Intercept
Example: Given two points, find slope and apply point-slope form.
Convert to slope-intercept form for easy graphing: ( y = mx + b )
Horizontal and Vertical Lines
Horizontal Line
: ( y = c ), crosses the y-axis.
Vertical Line
: ( x = c ), crosses the x-axis.
Parallel and Perpendicular Lines
Parallel Lines
Have the same slope.
Example: Finding an equation parallel to a given line.
Perpendicular Lines
Slopes are negative reciprocals of each other.
Example: Finding an equation perpendicular to a given line.
Angle of Inclination
Angle a line makes with the x-axis.
Relation with Slope
: ( \tan(\theta) = \text{slope} )
Example: Given angle, find slope using tangent.
Reverse: Given slope, find angle using inverse tangent.
Distance Formula
Derived using the Pythagorean theorem.
Formula
: ( d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} )
Used to calculate distance between two points.
Conclusion
Emphasis on understanding algebra and trigonometry foundations for calculus success.
Upcoming topics include derivatives and integrals involving trig functions.
📄
Full transcript