⚛️

Understanding Radioactive Decay and Particles

Apr 23, 2025

Radioactive Decay in Nuclear Chemistry

Types of Particles

  1. Alpha Particle

    • Mass: 4
    • Charge: 2
    • Equivalent to the nucleus of a helium atom.
  2. Beta Particle

    • Mass: 0
    • Charge: -1
    • Equivalent to an electron.
  3. Positron

    • Mass: 0
    • Charge: +1
    • Antiparticle of an electron.
  4. Proton

    • Mass: 1
    • Charge: 1
  5. Neutron

    • Mass: 1
    • Charge: 0
  6. Gamma Particle

    • Mass: 0
    • Charge: 0
    • High energy photon.

Example: Beta Decay

  • Equation Setup: Nitrogen-13 decays into a beta particle and another element.
    • Mass: 0 + 13 = 13
    • Charge: -1 + 8 = 7
    • Resulting Element: Oxygen-13
  • Effects of Beta Decay:
    • Mass remains constant.
    • Atomic number increases (number of protons increases).
    • Number of neutrons decreases (neutron converted to a proton).

Example: Positron Production

  • Equation Setup: Nitrogen-13 decays into a positron and another element.
    • Atomic Number: 7 - 1 = 6
    • Resulting Element: Carbon
  • Effects of Positron Production:
    • Atomic number decreases (proton converted to a neutron).
    • Neutron number increases.
    • Positron meets an electron, annihilating to form gamma radiation.

Electron Capture

  • Explanation: The nucleus captures an electron, forming a neutron.
  • Example: Arsenic-73 captures an electron.
    • Atomic Number: 33 + 1 = 32, resulting in Germanium.
    • Effects:
      • Proton number decreases.
      • Neutron number increases (proton + electron = neutron).

Alpha Particle Production

  • Explanation: Production of an alpha particle by an element.
  • Example: Element with atomic number 84 produces an alpha particle.
    • Mass Loss: 4
    • Atomic Number Loss: 2
    • Resulting Element: Lead (Pb)
  • Balancing Reactions: Ensure masses and charges are balanced on both sides of the equation.

Conclusion

  • Introduction to nuclear chemistry focusing on radioactive decay.
  • Importance of balancing nuclear equations using mass and atomic number conservation.