📈

Key Tests for Series Convergence

Apr 28, 2025

Review of Series Convergence Tests

1. Divergence Test

  • Procedure: Take the limit as ( n \to \infty ) of the sequence ( a_n ).
    • If the limit ( \neq 0 ), the series diverges.
    • If the limit ( = 0 ), further testing is needed.

2. Geometric Series

  • Form: ( a \cdot r^n ) or ( a \cdot r^{n-1} ).
  • Convergence Criteria:
    • If ( |r| < 1 ), series converges.
    • If ( |r| \geq 1 ), series diverges.

3. P-Series Test

  • Form: ( \frac{1}{n^p} ).
  • Convergence:
    • If ( p > 1 ), series converges.
    • If ( p \leq 1 ), series diverges.

4. Telescoping Series

  • Form: Cancellation of terms allows you to find a simple partial sum.
  • Convergence:
    • Evaluate the partial sum formula as ( n \to \infty ).

5. Integral Test

  • Conditions: Function ( f(x) ) must be positive, continuous, and decreasing.
  • Procedure:
    • Take ( \int_1^\infty f(x) , dx ).
    • Finite integral implies convergence; infinite implies divergence.

6. Ratio Test

  • Procedure: ( \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| )
    • (< 1): Series converges.
    • (> 1) or (= \infty): Series diverges.
    • (= 1): Inconclusive.

7. Root Test

  • Procedure: ( \lim_{n \to \infty} \sqrt[n]{|a_n|} )
    • (< 1): Series converges.
    • (> 1) or (= \infty): Series diverges.
    • (= 1): Inconclusive._

8. Direct Comparison Test

  • Concept: Compare with a known series ( b_n ).
    • If ( b_n ) converges and ( b_n ) ( \ge a_n ), then ( a_n ) converges.
    • If ( a_n ) diverges and ( b_n \le a_n ), then ( b_n ) diverges.

9. Limit Comparison Test

  • Procedure: ( \lim_{n \to \infty} \frac{a_n}{b_n} = L )
    • If ( L ) is finite and positive, both series ( a_n ) and ( b_n ) either converge or diverge together._

10. Alternating Series Test

  • Form: ( (-1)^n a_n ) or ( (-1)^{n+1} a_n ).
  • Conditions:
    • ( a_n \to 0 ) as ( n \to \infty ).
    • Sequence ( a_n ) is decreasing.

11. Absolute Convergence

  • Concept:
    • If ( |a_n| ) converges, then the series is absolutely convergent.
    • If ( a_n ) converges but ( |a_n| ) does not, it is conditionally convergent.

Examples and Applications

Example 1

  • Series: ( \frac{2n^2+5}{7n^2-4} )
  • Test: Divergence Test
    • Limit ( \neq 0 ), series diverges.

Example 2

  • Series: ( \frac{\sqrt[3]{n}}{n^5} )
  • Test: P-Series
    • Simplified to ( \frac{1}{n^{\frac{14}{3}}} ), ( p > 1 ), series converges.

Example 3

  • Series: ( 5 \cdot \left( \frac{1}{4} \right)^{n-1} )
  • Test: Geometric Series
    • ( |r| = \frac{1}{4} < 1 ), series converges.

Example 4

  • Series: ( \frac{(-1)^n}{\sqrt{n}} )
  • Test: Alternating Series
    • Meets criteria, converges conditionally.

Example 5

  • Series: ( \frac{1}{n(n+1)} )
  • Test: Telescoping Series
    • Converges, sum is 1.

Example 6

  • Series: ( \frac{1}{n^2+4} )
  • Test: Direct Comparison
    • Compared with ( \frac{1}{n^2} ), converges.

Example 7

  • Series: ( \frac{1}{\sqrt{n}-2} )
  • Test: Direct Comparison and Integral Test
    • Diverges.

Example 8

  • Series: ( \frac{\sqrt{n}}{n^3+2} )
  • Test: Limit Comparison
    • Converges using comparison with ( \frac{\sqrt{n}}{n^3} ).

Example 9

  • Series: ( \left( \frac{3n^2-9}{7n^2+4} \right)^n )
  • Test: Root Test
    • Limit ( < 1 ), series converges.

Example 10

  • Series: ( \frac{2^n}{n!} )
  • Test: Ratio Test
    • Limit goes to 0, series converges.

These summaries provide an overview of the tests necessary for series convergence or divergence, along with examples illustrating each test's application.