📐

Understanding Parabolas and Their Transformations

May 13, 2025

Lecture Notes: Grade 11 Parabola

Identifying a Parabola

  • A parabola is identified by the equation of the form (y = x^2).
  • The key feature distinguishing a parabola from an exponential graph:
    • Parabola: (x^2) (x is the base)
    • Exponential: (x) is an exponent.

Transformation of Parabolas

Vertical Shifts

  • Rule: (y = x^2 + c)
    • (c > 0): Shifts upward.
    • (c < 0): Shifts downward.
  • Example: (y = x^2 + 1) shifts 1 unit up from (0,0) to (0,1).

Horizontal Shifts

  • Rule: (y = (x - h)^2)
    • (h > 0): Shifts right.
    • (h < 0): Shifts left.
  • Think in opposites: (x - 2) shifts right.
  • Example: ((x - 2)^2 + 1) shifts right 2 units, up 1 unit.

The Impact of the Leading Coefficient

  • Coefficient (a) in (y = ax^2):
    • (a > 0): "Happy" parabola (opens upward).
    • (a < 0): "Sad" parabola (opens downward).
    • Magnitude of (a): Larger (a) results in a narrower parabola.

Graph Sketching Practice

  • Purpose: Understanding shifts and orientations.
  • Not focused on exact intercept values, just shifts and direction.

Examples and Analysis

Example 1:

  • Equation: (y = x^2 - 4)
  • Type: Parabola with vertical shift down 4 units.
  • Result: Happy parabola.

Example 2:

  • Equation: (y = (x - 1)^2 - 4)
  • Type: Horizontal shift right 1, vertical shift down 4.
  • Result: Happy parabola.

Example 3:

  • Equation: (y = -(x - 1)^2 + 4)
  • Type: Horizontal shift right 1, vertical shift up 4.
  • Result: Sad parabola.

Example 4:

  • Equation: (y = (x + 4)^2 + 3)
  • Type: Horizontal shift left 4, vertical shift up 3.
  • Result: Happy parabola.

Example 5:

  • Equation: (y = (x - 6)^2 + 2)
  • Type: Horizontal shift right 6, vertical shift up 2.
  • Result: Happy parabola.

Drawing a Parabola

Steps:

  1. X-Intercepts: Make (y = 0).
  2. Y-Intercept: Make (x = 0).
  3. Turning Point:
    • Method 1: Average the x-intercepts.
    • Method 2: Use the formula (-b/(2a)).
    • Method 3: From turning point form.

Example Calculation

  • Equation: (y = x^2 - 7x - 5)
  • X-Intercepts: Find using quadratic formula.
  • Y-Intercept: (y = -5).
  • Turning Point:
    • Calculated using (-b/(2a)) and substituting back into the equation.

Turning Point Form

  • Form: (y = (x - h)^2 + k)
  • Quick identification of turning point: ( (h, k) ).
  • Use turning point formula when presented in this form.

In the next video, we will practice more examples and focus on detailed graphing of parabolas.