Coconote
AI notes
AI voice & video notes
Try for free
📈
Understanding Natural Logarithms and Equations
Nov 22, 2024
Natural Logarithms Lecture Notes
Introduction to Natural Logarithms
Natural Logarithm (ln)
: A logarithm with base ( e )
Special notation: ln
Constant ( e )
:
Similar to ( \pi )
Value of ( e ) used in calculations
Examples and Calculations
Using ( e )
:
( e^{0.5} \approx 1.6487 )
( e^{-2.67} \approx 0.0693 )
Using Natural Log (ln)
:
( \ln(3) \approx 1.0986 )
( \ln\left(\frac{1}{4}\right) \approx -1.3863 )
Switching Between Exponential and Logarithmic Forms
Exponential Form
:
Example: ( x ) as an exponent.
Log base ( e ) of 23: ( \ln(23) = x )
Logarithmic Form
:
Example: ( \ln(x) \approx 1.2528 )
Convert to exponential: ( e^{1.2528} = x )
Inverse Property
Inverse Property
:
Base ( e ) and natural logarithms cancel out.
Example: ( e^{ln(x)} = x )
Examples
:
( e^{\ln(21)} = 21 )
( \ln(e^{x^2 - 1}) = x^2 - 1 )
Solving Equations
Example 1
Equation
: ( \ln(3x) = 0.5 )
Convert to exponential: ( e^{0.5} = 3x )
Calculate: ( 1.6487 = 3x )
Solve for ( x ): ( x = 0.5496 )
Example 2
Equation
: ( \ln(2x - 3) = 2.5 )
Convert to exponential: ( e^{2.5} = 2x - 3 )
Calculate: ( 12.1825 = 2x - 3 )
Solve for ( x ): ( x = 7.5912 )
Solving Exponential Equations
Example 3
Equation
: ( 3e^{-2x} = 10 )
Isolate exponential: ( 3e^{-2x} = 6 )
Convert using ( \ln ): ( \ln(e^{-2x}) = \ln(2) )
Inverse property: ( -2x = \ln(2) )
Solve for ( x ): ( x = -0.3466 )
Example 4
Equation
: ( 2e^{x+5} = 14 )
Isolate exponential: ( e^{x+5} = 7 )
Convert using ( \ln ): ( \ln(e^{x+5}) = \ln(7) )
Inverse property: ( x + 5 = 1.9459 )
Solve for ( x ): ( x = -3.0541 )
Conclusion
Reviewed natural logarithms and properties
Practiced converting between forms and solving equations
Emphasized the importance of inverse properties in solving equations
📄
Full transcript