Coconote
AI notes
AI voice & video notes
Try for free
📐
Simplifying Surds and Expressions
Nov 24, 2024
Simplifying Expressions with Surds
Recap of Rules
Multiplying/Dividing Surds
:
Multiply or divide the numbers inside the root.
Example:
( \sqrt{5} \times \sqrt{6} = \sqrt{5 \times 6} = \sqrt{30} )
( \sqrt{20} \div \sqrt{10} = \sqrt{20/10} = \sqrt{2} )
Adding/Subtracting Surds
:
Cannot add or subtract different surds directly.
Example:
( \sqrt{13} + \sqrt{6} \neq \sqrt{19} )
Can add/subtract coefficients of same surds.
Example:
( 2\sqrt{3} + 5\sqrt{3} = 7\sqrt{3} )
( 6\sqrt{7} - 2\sqrt{7} = 4\sqrt{7} )
Multiplying a Surd by Itself
:
Surd disappears as it becomes a whole number.
Example:
( \sqrt{7} \times \sqrt{7} = 7 )
Simplifying Expressions
Goal
: Simplify expressions into the form ( a + b\sqrt{n} ) where ( a ) and ( b ) are integers.
Example Expression 1
Expression: ( \sqrt{125} - 2\sqrt{45} + (\sqrt{5} + 2)^2 )
Simplify ( \sqrt{125} ):
( \sqrt{125} = \sqrt{5 \times 25} = \sqrt{5} \times 5 = 5\sqrt{5} )
Simplify ( 2\sqrt{45} ):
( \sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5} )
( 2\sqrt{45} = 2 \times 3\sqrt{5} = 6\sqrt{5} )
Remember: ( -6\sqrt{5} )
Expand ((\sqrt{5} + 2)^2):
( \sqrt{5} \times \sqrt{5} = 5 )
( \sqrt{5} \times 2 = 2\sqrt{5} )
( 2 \times \sqrt{5} = 2\sqrt{5} )
( 2 \times 2 = 4 )
Simplified: ( 5 + 4 + 4\sqrt{5} = 9 + 4\sqrt{5} )
Combine Terms
:
( 5\sqrt{5} - 6\sqrt{5} + 9 + 4\sqrt{5} = 3\sqrt{5} + 9 )
Rewritten as: ( 9 + 3\sqrt{5} )
Example Expression 2
Expression: ( \sqrt{48} + 2\sqrt{75} + (\sqrt{3})^2 )
Simplify ( \sqrt{48} ):
( \sqrt{48} = 4\sqrt{3} )
Simplify ( 2\sqrt{75} ):
( 2\sqrt{75} = 10\sqrt{3} )
Simplify ( (\sqrt{3})^2 ):
( (\sqrt{3})^2 = 3 )
Combine Terms
:
( 4\sqrt{3} + 10\sqrt{3} + 3 = 14\sqrt{3} + 3 )
Rewritten as: ( 3 + 14\sqrt{3} )
Closing Remarks
Understanding and applying these rules helps in simplifying surds to desired forms.
Useful for exams and mathematical applications.
Share knowledge with peers for collaborative learning.
📄
Full transcript