Coconote
AI notes
AI voice & video notes
Try for free
📐
Understanding Vector Addition Techniques
Apr 27, 2025
Lecture Notes: Adding Vectors
Introduction to Vectors
Definition
: A vector is a quantity that has both magnitude and direction.
Example
: A force vector of 100 newtons directed east.
Magnitude: 100 newtons
Direction: East
Adding Parallel Vectors
Example 1
: 100 newtons east + 50 newtons east
Resultant: 150 newtons east
Rule
: Directly add magnitudes if vectors are parallel.
Adding Anti-Parallel Vectors
Example 2
: 200 newtons east + 120 newtons west
Resultant: 80 newtons east (net force is directed east as 200 > 120)
Example 3
: 60 newtons east + 90 newtons west
Resultant: 30 newtons west
Adding Perpendicular Vectors
Example 4
: 80 newtons north + 120 newtons south
Resultant: 40 newtons south
Example 5
: 30 newtons east + 40 newtons north
Resultant Magnitude
: Use the Pythagorean theorem.
Formula: [ \text{Resultant} = \sqrt{F_1^2 + F_2^2} ]
Magnitude: 50 newtons (familiar 3-4-5 triangle)
Direction
: Use inverse tangent.
Formula: [ \theta = \tan^{-1} \left(\frac{F_y}{F_x}\right) ]
Angle: 53.1 degrees relative to x-axis
Example of Vectors in Different Quadrants
Example 6
: 50 newtons west + 120 newtons south
Magnitude
: 130 newtons (use Pythagorean theorem)
Direction
:
Reference angle: [ \theta = \tan^{-1} \left(\frac{120}{50}\right) = 67.4 \text{ degrees} ]
Relative to x-axis: 247.4 degrees (since it is in quadrant III)
Example with Non-Parallel/Perpendicular Vectors
Example 7
: 45 newtons east + 60 newtons south
Magnitude
: 75 newtons
Direction
:
Reference angle: [ \theta = \tan^{-1} \left(\frac{60}{45}\right) = 53.1 \text{ degrees} ]
Resultant force vector in quadrant IV
Angle relative to x-axis: 306.9 degrees
General Strategy for Adding Vectors
When vectors are not parallel/perpendicular:
Decompose into Components
: Use cosine for x-component, sine for y-component.
Sum Components
: [ F_x = \sum F_{xi}, F_y = \sum F_{yi} ]
Resultant Vector
:
Magnitude: [ \sqrt{F_x^2 + F_y^2} ]
Direction: [ \theta = \tan^{-1} \left(\frac{F_y}{F_x}\right) ]
Example of Component Method
Vectors
: 100 newtons east + 150 newtons at 30 degrees above x-axis
Components
:
[ F_{1x} = 100 \cos(0), F_{1y} = 100 \sin(0) ]
[ F_{2x} = 150 \cos(30), F_{2y} = 150 \sin(30) ]
Sum of Components
:
[ F_x = 229.9, F_y = 75 ]
Resultant
:
Magnitude: 241.8 newtons
Direction: 18.1 degrees relative to x-axis
Quadrant Rules for Angles
Quadrant I: Angle = Reference Angle
Quadrant II: Angle = 180 - Reference Angle
Quadrant III: Angle = 180 + Reference Angle
Quadrant IV: Angle = 360 - Reference Angle
📄
Full transcript