📐

Area Calculation of Regular Polygons

Apr 23, 2025

Calculating the Area of a Regular Polygon

Key Concepts

  • The area of any regular polygon can be calculated using the formula:

    [ \text{Area} = \frac{1}{2} \times \text{apothem} \times \text{perimeter} ]

  • Apothem: A line from the center to the midpoint of one of its sides.

  • Perimeter: The total length of all the sides of the polygon.

Example Calculations

Regular Hexagon

  • Given:
    • Apothem ( a = 8\sqrt{3} )
    • Side length ( s = 16 )
  • Steps:
    1. Calculate the perimeter:
      • Perimeter ( = 6 \times 16 = 96 )
    2. Calculate the area:
      • Area ( = \frac{1}{2} \times 8\sqrt{3} \times 96 = 384\sqrt{3} )

Regular Pentagon

  • Given:
    • Apothem ( a = 9 )
    • Side length ( s = 10.6 )
  • Steps:
    1. Calculate the perimeter:
      • Perimeter ( = 5 \times 10.6 = 53 )
    2. Calculate the area:
      • Area ( = \frac{1}{2} \times 9 \times 53 = 238.5 )

Regular Hexagon with Side Length

  • Given:
    • Side length ( s = 20 )
  • Steps:
    1. Calculate the angle ( \theta = \frac{360}{2n} ); ( n = 6 )
      • ( \theta = 30^\circ )
    2. Use the 30-60-90 triangle properties:
      • Apothem ( a = 10\sqrt{3} )
    3. Calculate the perimeter:
      • Perimeter ( = 6 \times 20 = 120 )
    4. Calculate the area:
      • Area ( = \frac{1}{2} \times 10\sqrt{3} \times 120 = 600\sqrt{3} )

Regular Pentagon with Only Side Length

  • Given:
    • Side length ( s = 30 )
  • Steps:
    1. Calculate the angle ( \theta = \frac{360}{2n} ); ( n = 5 )
      • ( \theta = 36^\circ )
    2. Calculate the apothem using trigonometry:
      • Apothem ( a \approx 20.65 )
    3. Calculate the perimeter:
      • Perimeter ( = 5 \times 30 = 150 )
    4. Calculate the area:
      • Area ( = \frac{1}{2} \times 20.65 \times 150 \approx 1550 )

Equilateral Triangle

  • Given:
    • Side length ( s = 20 )
  • Steps:
    1. Use the formula for equilateral triangles:
      • Area ( = \frac{\sqrt{3}}{4} \times 20^2 = 100\sqrt{3} )

Regular Hexagon with Given Radius

  • Given:
    • Radius ( r = 10 )
  • Steps:
    1. Calculate the angle and use 30-60-90 triangle:
      • Apothem ( a = 5\sqrt{3} )
      • Side ( s = 10 )
    2. Calculate the perimeter:
      • Perimeter ( = 6 \times 10 = 60 )
    3. Calculate the area:
      • Area ( = \frac{1}{2} \times 5\sqrt{3} \times 60 = 150\sqrt{3} )

Summary

  • You can calculate the area of any regular polygon using different known values such as side length, apothem, or radius.
  • Utilize trigonometric functions and properties of special triangles (30-60-90) to find missing dimensions when necessary.

Note: Practice these steps with various exercises to become proficient in calculating areas of polygons.