Coconote
AI notes
AI voice & video notes
Try for free
📈
Understanding Graph Transformations of Functions
Sep 12, 2024
📄
View transcript
🃏
Review flashcards
Lecture Notes: Graphing Transformations of a Function
Introduction
Discussing graphing transformations of a given function using the graph of the function.
Four types of transformations will be covered.
Example 1: Vertical Shift
Function
: f(x) (in red on graph).
Transformation
: g(x) = f(x) + 3.
Key Points
: Identify three key points on f(x).
Procedure
: Add 3 to each y-coordinate.
Shift graph up by 3 units.
Examples
:
(−3, 1) ➔ (−3, 4)
(−1, 2) ➔ (−1, 5)
(3, −2) ➔ (3, 1)
Example 2: Reflection over x-axis
Function
: f(x) (same red graph).
Transformation
: g(x) = -f(x).
Procedure
: Change the sign of each y-coordinate.
Reflect graph across x-axis.
Examples
:
(−3, 1) ➔ (−3, −1)
(−1, 2) ➔ (−1, −2)
(3, −2) ➔ (3, 2)
Example 3: Horizontal Shift
Function
: f(x) (same red graph).
Transformation
: g(x) = f(x + 3).
Understanding
: Not adding 3 to x-coordinates directly.
Subtract 3 from x-coordinates.
Graph shifts left by 3 units.
Examples
:
(−3, 1) ➔ (−6, 1)
(−1, 2) ➔ (−4, 2)
(3, −2) ➔ (0, −2)
Notes
:
For g(x) = f(x + c):
If c < 0 (f(x - c)), shift right c units.
If c > 0, shift left c units.
Example 4: Reflection over y-axis
Function
: f(x) (same red graph).
Transformation
: g(x) = f(−x).
Procedure
: Change the sign of each x-coordinate.
Reflect graph across y-axis.
Examples
:
(−3, 1) ➔ (3, 1)
(−1, 2) ➔ (1, 2)
(3, −2) ➔ (−3, −2)
Conclusion
Reviewed four main types of transformations: vertical shift, reflection over x-axis, horizontal shift, and reflection over y-axis.
Important to correctly identify how each transformation affects the graph.
📄
Full transcript