📈

Understanding Graph Transformations of Functions

Sep 12, 2024

Lecture Notes: Graphing Transformations of a Function

Introduction

  • Discussing graphing transformations of a given function using the graph of the function.
  • Four types of transformations will be covered.

Example 1: Vertical Shift

  • Function: f(x) (in red on graph).
  • Transformation: g(x) = f(x) + 3.
  • Key Points: Identify three key points on f(x).
  • Procedure: Add 3 to each y-coordinate.
    • Shift graph up by 3 units.
  • Examples:
    • (−3, 1) ➔ (−3, 4)
    • (−1, 2) ➔ (−1, 5)
    • (3, −2) ➔ (3, 1)

Example 2: Reflection over x-axis

  • Function: f(x) (same red graph).
  • Transformation: g(x) = -f(x).
  • Procedure: Change the sign of each y-coordinate.
    • Reflect graph across x-axis.
  • Examples:
    • (−3, 1) ➔ (−3, −1)
    • (−1, 2) ➔ (−1, −2)
    • (3, −2) ➔ (3, 2)

Example 3: Horizontal Shift

  • Function: f(x) (same red graph).
  • Transformation: g(x) = f(x + 3).
  • Understanding: Not adding 3 to x-coordinates directly.
    • Subtract 3 from x-coordinates.
    • Graph shifts left by 3 units.
  • Examples:
    • (−3, 1) ➔ (−6, 1)
    • (−1, 2) ➔ (−4, 2)
    • (3, −2) ➔ (0, −2)
  • Notes:
    • For g(x) = f(x + c):
      • If c < 0 (f(x - c)), shift right c units.
      • If c > 0, shift left c units.

Example 4: Reflection over y-axis

  • Function: f(x) (same red graph).
  • Transformation: g(x) = f(−x).
  • Procedure: Change the sign of each x-coordinate.
    • Reflect graph across y-axis.
  • Examples:
    • (−3, 1) ➔ (3, 1)
    • (−1, 2) ➔ (1, 2)
    • (3, −2) ➔ (−3, −2)

Conclusion

  • Reviewed four main types of transformations: vertical shift, reflection over x-axis, horizontal shift, and reflection over y-axis.
  • Important to correctly identify how each transformation affects the graph.