Coconote
AI notes
AI voice & video notes
Try for free
∫
Understanding Indefinite Integrals
May 16, 2025
Indefinite Integral Problems Lecture Notes
Basic Principles
Anti-derivative of a Constant
:
Integral of 4 dx: Add an 'x' to the constant. Result:
4x + c
Example: Integral of π dy: Result:
πy + c
Integral of a Constant with Respect to Another Variable
:
Integral of e dz: Result:
ez + c
Integrals of Powers of Variables
Formula for Powers
:
Integral of x^n dx: Result:
x^(n+1)/(n+1) + c
Example: Integral of x^2 dx: Result:
x^3/3 + c
Integrals Involving Coefficients
:
Example: Integral of 8x^3 dx: Result:
2x^4 + c
Polynomial Functions
Integrate Terms Separately
:
Example: Integral of x^2 - 5x + 6 dx: Result:
x^3/3 - 5x^2/2 + 6x + c
Fractions and Roots
Square Roots
:
Rewriting square root functions for integration, e.g., Integral of √x dx: Rewrite as x^(1/2), Result:
2/3 x^(3/2) + c
Fractional Powers
:
Example: Integral of x^(4/3) dx: Result:
3/7 x^(7/3) + c
Special Cases
Reciprocal Functions
:
Integral of 1/x dx: Result:
ln|x| + c
Exponential Functions
:
Example: Integral of e^(4x) dx: Result:
e^(4x)/4 + c
Trigonometric Functions
Basic Trigonometric Integrals
:
Integral of cos(x) dx: Result:
sin(x) + c
Integral of sin(x) dx: Result:
-cos(x) + c
Advanced Trigonometric Integrals
:
Integral involving sec²(x) or sec(x)tan(x).
Techniques for Complex Expressions
U Substitution
:
Useful for expressions like x²sin(x³) dx by substituting u = x³.
Integration by Parts
:
Formula: ∫u dv = uv - ∫v du.
Example: Integral of x cos(x) dx.
Additional Techniques
Trigonometric Substitution
:
Used for expressions like 4/(1 + x²) dx, replacing x with tangent(θ).
Conclusion
Practice with each type of function to reinforce understanding.
Use substitutions and transformations to simplify more complex integrals.
📄
Full transcript