Exploring Horizontal and Vertical Lines

Oct 19, 2024

Key Concepts of Horizontal and Vertical Lines

Introduction

  • Discussion of horizontal (yellow) and vertical (blue) lines.
  • Importance of understanding their key features, particularly the slope.

Understanding Slope

  • Slope Definition: Slope (denoted by M) = Rise / Run
    • "Rise" refers to how much a line goes up or down.
    • "Run" refers to how much a line moves left or right.

Horizontal Lines

  • Slope of Horizontal Line:
    • Rise = 0 (no vertical movement).
    • Run = any non-zero number.
    • Slope (M) = 0/Run = 0.
    • Conclusion: The slope of a horizontal line is always 0.

Vertical Lines

  • Slope of Vertical Line:
    • Rise = some number (vertical movement).
    • Run = 0 (no horizontal movement).
    • Slope = Rise/0 (undefined, division by zero).
    • Conclusion: The slope of a vertical line is always undefined.

Example Problems

Graphing Equations

  • Equation: y = -4

    • Horizontal line at y = -4.
    • All points on this line have the same y-value of -4.
  • Equation: x = 3

    • Vertical line at x = 3.
    • All points on this line have the same x-value of 3.

Determining Slope

  • Example with Horizontal Line

    • Given: A line where x = -2.
    • Selected points show rise = 0, run = 2.
    • Slope = 0/2 = 0.
  • Example with Vertical Line

    • Given: A point (-5, -2).
    • Vertical line passing through this point.
    • All points have the same x-value of -5.
    • Equation: x = -5.

Final Example

  • Equation of a Line
    • All points have the same x-value of -9.
    • Equation: x = -9.

Conclusion

  • Understanding horizontal and vertical lines is crucial in analyzing their slopes.
  • Remember: Horizontal lines have a slope of 0, while vertical lines have an undefined slope.