Coconote
AI notes
AI voice & video notes
Try for free
ЁЯУР
Differentiation - Basic Concepts
Jul 16, 2024
Differentiation - Basic Concepts
Introduction
рд╢реБрд░реБрдЖрдд рдбреЗрд░рд┐рд╡реЗрдЯрд┐рд╡реНрд╕ рдФрд░ рдбрд┐рдлрд░реЗрдВрдЯрд╢рд┐рдПрд╢рди рдХреА
рд╕реЗрд╢рди рдореЗрдВ рдкреЗрд╕рд┐рдлрд┐рдХ рдбрд┐рдлрд░реЗрдВрдЯрд╢рд┐рдПрд╢рди
Part 1: Basics of Differentiation
Class 12th syllabus рдореЗрдВ рд╢рд╛рдорд┐рд▓
What is a Derivative?
Derivative рдХрд╛ рдореАрдирд┐рдВрдЧ: рд╕реНрд▓реЛрдк (Slope of a Tangent to the Curve)
Derivative = Slope of Tangent to FunctionтАЩs Graph
Mathematical language: рдЕрдЧрд░ рдкреЙрдЗрдВрдЯ рдХреЗ рдХреЛрдСрд░реНрдбрд┐рдиреЗрдЯ рдПрдХреНрд╕ рдФрд░ рдПрдХреНрд╕ рдкреНрд▓рд╕ рдПрдЪ рд╣реЛрдВ рддреЛ:
Slope = (f(x+h) - f(x))/h рдЬрдм h -> 0
Derivative notation: f'(x) рдпрд╛ dy/dx
First Principle Method to find derivatives: lim(h -> 0) [(f(x+h) - f(x))/h]
Important Formulas
Derivatives of basic functions using First Principle:
Slope of f(x) at point x is derived as: lim(h -> 0) [(f(x+h) - f(x))/h]
Examples Using First Principle Method
Derivative of sin(x): Using first principle, derivative of sin(x) with respect to x is cos(x)
Derivative of x^2: Using first principle, derivative is 2x
Basic Differentiation Formulas to Remember
Trigonometric Functions
d/dx[sin x] = cos x
d/dx[cos x] = -sin x
d/dx[tan x] = sec┬▓ x
d/dx[cot x] = -csc┬▓ x
d/dx[sec x] = sec x tan x
d/dx[csc x] = -csc x cot x
Inverse Trigonometric Functions
d/dx[sinтБ╗┬╣ x] = 1/тИЪ(1 - x┬▓)
d/dx[cosтБ╗┬╣ x] = -1/тИЪ(1 - x┬▓)
d/dx[tanтБ╗┬╣ x] = 1/(1 + x┬▓)
d/dx[cotтБ╗┬╣ x] = -1/(1 + x┬▓)
d/dx[secтБ╗┬╣ x] = 1/(|x|тИЪ(x┬▓ - 1))
d/dx[cscтБ╗┬╣ x] = -1/(|x|тИЪ(x┬▓ - 1))
Exponential and Logarithmic Functions
d/dx[a^x] = a^x ln(a)
d/dx[e^x] = e^x
d/dx[ln x] = 1/x
d/dx[logтВР(x)] = 1/(x ln(a))
Polynomial Functions
d/dx[x^n] = nx^(n-1)
d/dx[k] = 0
d/dx[тИЪx] = 1/(2тИЪx)
Theorems for Differentiation
Sum/Difference Rule
d/dx[f(x) ┬▒ g(x)] = d/dx[f(x)] ┬▒ d/dx[g(x)]
Product Rule
d/dx[f(x)g(x)] = f(x)d/dx[g(x)] + g(x)d/dx[f(x)]
Quotient Rule
d/dx[f(x)/g(x)] = (g(x)d/dx[f(x)] - f(x)d/dx[g(x)]) / (g(x))┬▓
Chain Rule
If y = f(g(x)), then dy/dx = f'(g(x))
g'(x)
Advanced Differentiation Techniques
Understanding and applying the above theorems
Eg: If f(x) = e^(sin(x)), using chain rule:
f'(x) = e^(sin(x)) * cos(x)
Practical application in simplifying complex differentiation problems*
Practice and Application
Various examples to practice using the mentioned rules
Emphasis on attempting problems for mastery
Encouragement to share solutions and actively participate in discussions
Conclusion
Recapping the importance of understanding basics for mastering differentiation
Future sessions to cover more advanced topics and applications in differentiation
ЁЯУД
Full transcript