ЁЯУР

Differentiation - Basic Concepts

Jul 16, 2024

Differentiation - Basic Concepts

Introduction

  • рд╢реБрд░реБрдЖрдд рдбреЗрд░рд┐рд╡реЗрдЯрд┐рд╡реНрд╕ рдФрд░ рдбрд┐рдлрд░реЗрдВрдЯрд╢рд┐рдПрд╢рди рдХреА
  • рд╕реЗрд╢рди рдореЗрдВ рдкреЗрд╕рд┐рдлрд┐рдХ рдбрд┐рдлрд░реЗрдВрдЯрд╢рд┐рдПрд╢рди
  • Part 1: Basics of Differentiation
  • Class 12th syllabus рдореЗрдВ рд╢рд╛рдорд┐рд▓

What is a Derivative?

  • Derivative рдХрд╛ рдореАрдирд┐рдВрдЧ: рд╕реНрд▓реЛрдк (Slope of a Tangent to the Curve)
  • Derivative = Slope of Tangent to FunctionтАЩs Graph
  • Mathematical language: рдЕрдЧрд░ рдкреЙрдЗрдВрдЯ рдХреЗ рдХреЛрдСрд░реНрдбрд┐рдиреЗрдЯ рдПрдХреНрд╕ рдФрд░ рдПрдХреНрд╕ рдкреНрд▓рд╕ рдПрдЪ рд╣реЛрдВ рддреЛ:
    • Slope = (f(x+h) - f(x))/h рдЬрдм h -> 0
    • Derivative notation: f'(x) рдпрд╛ dy/dx
    • First Principle Method to find derivatives: lim(h -> 0) [(f(x+h) - f(x))/h]

Important Formulas

  • Derivatives of basic functions using First Principle:
    • Slope of f(x) at point x is derived as: lim(h -> 0) [(f(x+h) - f(x))/h]

Examples Using First Principle Method

  • Derivative of sin(x): Using first principle, derivative of sin(x) with respect to x is cos(x)
  • Derivative of x^2: Using first principle, derivative is 2x

Basic Differentiation Formulas to Remember

Trigonometric Functions

  • d/dx[sin x] = cos x
  • d/dx[cos x] = -sin x
  • d/dx[tan x] = sec┬▓ x
  • d/dx[cot x] = -csc┬▓ x
  • d/dx[sec x] = sec x tan x
  • d/dx[csc x] = -csc x cot x

Inverse Trigonometric Functions

  • d/dx[sinтБ╗┬╣ x] = 1/тИЪ(1 - x┬▓)
  • d/dx[cosтБ╗┬╣ x] = -1/тИЪ(1 - x┬▓)
  • d/dx[tanтБ╗┬╣ x] = 1/(1 + x┬▓)
  • d/dx[cotтБ╗┬╣ x] = -1/(1 + x┬▓)
  • d/dx[secтБ╗┬╣ x] = 1/(|x|тИЪ(x┬▓ - 1))
  • d/dx[cscтБ╗┬╣ x] = -1/(|x|тИЪ(x┬▓ - 1))

Exponential and Logarithmic Functions

  • d/dx[a^x] = a^x ln(a)
  • d/dx[e^x] = e^x
  • d/dx[ln x] = 1/x
  • d/dx[logтВР(x)] = 1/(x ln(a))

Polynomial Functions

  • d/dx[x^n] = nx^(n-1)
  • d/dx[k] = 0
  • d/dx[тИЪx] = 1/(2тИЪx)

Theorems for Differentiation

Sum/Difference Rule

  • d/dx[f(x) ┬▒ g(x)] = d/dx[f(x)] ┬▒ d/dx[g(x)]

Product Rule

  • d/dx[f(x)g(x)] = f(x)d/dx[g(x)] + g(x)d/dx[f(x)]

Quotient Rule

  • d/dx[f(x)/g(x)] = (g(x)d/dx[f(x)] - f(x)d/dx[g(x)]) / (g(x))┬▓

Chain Rule

  • If y = f(g(x)), then dy/dx = f'(g(x))g'(x)

Advanced Differentiation Techniques

  • Understanding and applying the above theorems
  • Eg: If f(x) = e^(sin(x)), using chain rule:
    • f'(x) = e^(sin(x)) * cos(x)
  • Practical application in simplifying complex differentiation problems*

Practice and Application

  • Various examples to practice using the mentioned rules
  • Emphasis on attempting problems for mastery
  • Encouragement to share solutions and actively participate in discussions

Conclusion

  • Recapping the importance of understanding basics for mastering differentiation
  • Future sessions to cover more advanced topics and applications in differentiation