Engineering Mathematics 2 - लाप्लास ट्रांसफॉर्म
Introduction
- यूनिट 1 के बाद यूनिट 2: लाप्लास ट्रांसफॉर्म
- यहाँ पर तीन मुख्य हिस्से: डिटेल्ड टॉपिक्स, रिवीजन, व महत्वपूर्ण टॉपिक्स
- यूनिट 4, 5 और 1 का वन शॉट रिवीजन हो चुका है.
- Focus: Unit 2 (लाप्लास ट्रांसफॉर्म) का रिवीजन
Unit 2 Topics:
- एप्लीकेशन ऑफ लाप्लास ट्रांसफॉर्म टू सॉल्व ऑर्डिनरी डिफरेंशियल इक्वेशंस
- कन्वॉल्यूशन थ्योरम
- इन्वर्स लाप्लास ट्रांसफॉर्म बाय पार्शियल फ्रैक्शन्स
- लाप्लास ट्रांसफॉर्म ऑफ पीरियोडिक फंक्शन्स
Important Formulas and Properties
Basic Laplace Transform Formulas:
- Transform of Simple Functions:
- 1 का लाप्लास = 1/s
- T^n का लाप्लास
- Exponential Functions:
- Trigonometrical Functions:
- sin(at) -> a/(s² + a²)
- cos(at) -> s/(s² + a²)
- 变换规则:
- sinh(at) और cosh(at) के कम्पाउन उदहारण |
- Common Transform Examples
Important Properties:
- Linearity Property:
- L{af(t) + bg(t)} = aL{f(t)} + bL{g(t)}
- First Shifting Property:
- Second Shifting Property (Unit step function):
- L{f(t-a)u(t-a)} = e^(-as)F(s)
- Change of Scale Property:
Key Topics and Their Revisions:
Application of Laplace Transform:
- Most Important Topics:
- Solution of ordinary differential equations
- Solution of simultaneous differential equations
- Typical exam questions (7 marks)
- Key Points:
- Starting topics necessary to understand advanced
- Sequential revision:
- Basic formulas
- Essential properties
- Detailed derivations
Convolution Theorem:
- Used to find the inverse Laplace transform.
- Formula:
[ (f * g)(t) = ∫_0^t f(τ)g(t-τ)dτ ]
- To solve inverse Laplace using convolution theorem, break the given equation:
- Identify F(s) and G(s) components
- Apply inverse Laplace
- Use convolution formula
Inverse Laplace Transform using Partial Fractions:
- Linear Factors:
- Repeated Linear Factors:
- Quadratic Factors:
- Combination of Factors
- Mixed form of above
- Method: Decompose into partial fractions, then solve each part
Laplace Transform of Periodic Functions:
- Useful for functions repeating over intervals.
- Formula and Steps to find:
[ L{f(t)} = 1/(1 - e^{-Ts}) imes integral from 0 to T {e^{-st}f(t)dt} ]
Detailed Revisions: Examples and Derivations
- Step-by-Step Derivations
- Exam-style Questions
- Convolution and Periodic Function Exercises
Practical Examples:
- Solving differential equations
- How to apply Laplace transforms to solve ordinary differential equations (ODEs)
- Use initial conditions
- Inverse Laplace transforms
- Using properties and partial fractions
- Convolution theorem applications
- Practical examples of using convolution theorem to find inverse laplace
- Periodic functions
- Steps to calculate Laplace transforms for periodic functions
Conclusion
- Ensure understanding of each property and formula
- Consistent practice of problems – both initial and advanced levels
- Practice problems for each formula
Notes
- Regular revision sessions essential
- Solve and revisit complex problems
- Use properties effectively during problem-solving
Advance Preparation
- Detailed study of each unit
- Ensure coverage of all provided topics and subtopics
Regular practice and revision of these fundamentals ensure strong foundational knowledge essential for full comprehension and problem-solving capabilities in Laplace transforms.