Definition: A special transformation in linear algebra, an extension of the concept of a transformation.
A transformation is essentially a function, denoted as T: ( \mathbb{R}^n \to \mathbb{R}^m ).
Conditions for a Linear Transformation
Additivity:
For vectors ( , \textbf{a}, \textbf{b} \in \mathbb{R}^n , ), a transformation T is linear if:
[ T(\textbf{a} + \textbf{b}) = T(\textbf{a}) + T(\textbf{b}) ]
Scalar Multiplication:
For any scalar ( , c , ) and vector ( , \textbf{a} ), T is linear if:
[ T(c \cdot \textbf{a}) = c \cdot T(\textbf{a}) ]
Example of Linear Transformation
Given transformation T:
T: ( \mathbb{R}^2 \to \mathbb{R}^2 )
( T(x_1, x_2) = (x_1 + x_2, 3x_1) )
Verifying Linear Transformation
Additivity Check:
For vectors ( \textbf{a} = (a_1, a_2) ) and ( \textbf{b} = (b_1, b_2) ):