📐

Understanding Linear Transformations in Algebra

Jun 5, 2025

Lecture on Linear Transformations

Introduction to Linear Transformations

  • Definition: A special transformation in linear algebra, an extension of the concept of a transformation.
  • A transformation is essentially a function, denoted as T: ( \mathbb{R}^n \to \mathbb{R}^m ).

Conditions for a Linear Transformation

  1. Additivity:
    • For vectors ( , \textbf{a}, \textbf{b} \in \mathbb{R}^n , ), a transformation T is linear if: [ T(\textbf{a} + \textbf{b}) = T(\textbf{a}) + T(\textbf{b}) ]
  2. Scalar Multiplication:
    • For any scalar ( , c , ) and vector ( , \textbf{a} ), T is linear if: [ T(c \cdot \textbf{a}) = c \cdot T(\textbf{a}) ]

Example of Linear Transformation

  • Given transformation T:
    • T: ( \mathbb{R}^2 \to \mathbb{R}^2 )
    • ( T(x_1, x_2) = (x_1 + x_2, 3x_1) )

Verifying Linear Transformation

  • Additivity Check:

    • For vectors ( \textbf{a} = (a_1, a_2) ) and ( \textbf{b} = (b_1, b_2) ):
      • ( T(\textbf{a} + \textbf{b}) = T((a_1 + b_1, a_2 + b_2)) = (a_1 + a_2 + b_1 + b_2, 3a_1 + 3b_1) )
      • ( T(\textbf{a}) + T(\textbf{b}) = (a_1 + a_2, 3a_1) + (b_1 + b_2, 3b_1) = (a_1 + a_2 + b_1 + b_2, 3a_1 + 3b_1) )
      • Shows ( T(\textbf{a} + \textbf{b}) = T(\textbf{a}) + T(\textbf{b}) )
  • Scalar Multiplication Check:

    • For a scalar ( , c , ):
      • ( T(c \cdot \textbf{a}) = T((ca_1, ca_2)) = (ca_1 + ca_2, 3ca_1) )
      • ( c \cdot T(\textbf{a}) = c \cdot (a_1 + a_2, 3a_1) = (ca_1 + ca_2, 3ca_1) )
      • Shows ( T(c \cdot \textbf{a}) = c \cdot T(\textbf{a}) )

Example of Non-Linear Transformation

  • Transformation T: ( T(x_1, x_2) = (x_1^2, 0) )

Verifying Non-Linear Transformation

  • Scalar Multiplication Check:
    • ( T(c \cdot \textbf{a}) = T((ca_1, ca_2)) = (ca_1)^2 = c^2a_1^2 )
    • ( c \cdot T(\textbf{a}) = c \cdot (a_1^2, 0) = (ca_1^2, 0) )
    • Shows ( T(c \cdot \textbf{a}) \neq c \cdot T(\textbf{a}) ), thus not linear

General Observations

  • Linear transformations involve only linear combinations of input components.
  • Non-linear transformations involve exponents or products of components.

Conclusion

  • Linear transformations are foundational in linear algebra, leading to further concepts and interesting results in subsequent discussions.