Creating a Retrieval-Augmented Generation (RAG) LLM App with Llama Index and OpenAI

Jul 10, 2024

Lecture Notes: Creating a Retrieval-Augmented Generation (RAG) LLM App with Llama Index and OpenAI

Introduction

  • Presenter: Krishak
  • Platform: YouTube
  • Topic: Building a RAG system to query multiple PDFs using Llama Index and OpenAI.

Overview

  • RAG (Retrieval-Augmented Generation): Combines the power of retrieval and generation models.
  • Purpose: Query information from multiple PDFs.
  • Tools Used: Llama Index, OpenAI, vector databases, external databases.

Setup and Basics

  • Environment Setup: (Using Conda)
    • Create a virtual environment: conda create -n VENV python=3.10
    • Activate the environment: conda activate VENV
    • Install libraries:
      • LlamaIndex
      • OpenAPI
      • pypdf
      • IPyKernel
      • python-dotenv

Project Structure

  • Data Folder: Contains PDFs for processing (e.g., attention.pdf and yolo.pdf).
  • Environment Variables: Store API keys securely.
  • Requirements File: Lists all necessary libraries for the project.
  • Jupyter Notebook: For initial testing and implementation: test.ipynb.

Implementation Steps

  1. Import Libraries: OS, dotenv, LlamaIndex
  2. Set Up Environment Variables: Loading API keys from .env file.
  3. Reading PDFs: Using SimpleDirectoryReader from Llama Index to read PDFs into documents.
  4. Convert Documents to Vectors: Creating vector embeddings from PDF content: