Comprehensive NumPy Tutorial Overview

Sep 12, 2024

NumPy Tutorial Overview

Introduction

  • Host: Dathan
  • Purpose: Complete hands-on tutorial on NumPy in Python
  • Importance: Key library for machine learning, data science, etc.

Content Schedule

  • 3 videos per week
    • Machine Learning Course: Monday & Wednesday evenings
    • Project video: Friday evening
  • Join Telegram group for updates

What is NumPy?

  • Full form: Numerical Python
  • Used for numerical operations and processing large datasets (millions of data points)

Advantages of NumPy Arrays over Lists and Tuples

  • Mathematical Operations: NumPy allows several mathematical operations compared to lists.
  • Performance: Operations on NumPy arrays are faster than on lists.

Getting Started with NumPy

  1. Importing NumPy: import numpy as np
  2. Using Google Colab: For running Python codes.
  3. Libraries: Pre-made functions/classes stored in Python files.

Performance Comparison: List vs NumPy Array

  • Example task: Adding 5 to all values in a list and a NumPy array.
  • Performance measured using time library.
  • Result: NumPy array operations are significantly faster when dealing with larger data.

Creating NumPy Arrays

1D Arrays

  • Syntax: np.array([1, 2, 3])
  • Check shape: array.shape

2D Arrays

  • Syntax: np.array([[1, 2], [3, 4]])
  • Check shape: array.shape

Data Types

  • Default: Integer values; specify using dtype for floating point, etc.

Creating Arrays with Placeholders

  • Zeros: np.zeros(shape)
  • Ones: np.ones(shape)
  • Full: np.full(shape, value)
  • Identity Matrix: np.eye(size)

Creating Random Arrays

  • Random values: np.random.random(size)
  • Random integers: np.random.randint(low, high, size)
  • Evenly spaced values: np.linspace(start, stop, num)

Converting Data Types

  • Convert lists to NumPy arrays: np.array(list)
  • Convert tuples to NumPy arrays: np.array(tuple)

Analyzing Arrays

  • Check shape: array.shape
  • Check dimensions: array.ndim
  • Check number of elements: array.size
  • Check data type: array.dtype

Mathematical Operations on Arrays

  • Element-wise addition, subtraction, multiplication, and division.
  • Use of functions like np.add(), np.subtract(), np.multiply(), np.divide().

Array Manipulation

Transposing Arrays

  • Use np.transpose(array) or array.T.

Reshaping Arrays

  • Reshape using: array.reshape(new_shape).

Conclusion

  • NumPy is essential for numerical operations in Python.
  • Faster operations and a variety of features for handling arrays.
  • Recommended to explore further for machine learning and data science applications.