Jul 11, 2024
y = e^(-2x)e^(-2x) = e^(-2x) * (-2)y' = -2e^(-2x)-2, multiply by derivative of e^(-2x): -2 * e^(-2x) * (-2)y'' = (-2)^2 * e^(-2x)(-2)^2, multiply by derivative of e^(-2x): (-2)^2 * e^(-2x) * (-2)y''' = (-2)^3 * e^(-2x)*y^(n) = (-2)^n * e^(-2x)(-2)^100 involves an even power, it can be written simply as 2^100.*y = sin(3x)sin(3x) = cos(3x) * 3y' = 3cos(3x)3cos(3x) = 3(-sin(3x) * 3)y'' = -3^2 * sin(3x)-3^2 * sin(3x) = -3^2 * cos(3x) * 3y''' = -3^3 * cos(3x)-3^3 * cos(3x) = -3^3 * (-sin(3x) * 3)y'''' = 3^4 * sin(3x)*(-1)^(99/4) * 3^99 * cos(3x)y = 2^x2^x = 2^x * ln(2)2^x * (ln(2))^22^x * (ln(2))^3*d^n(y) = 2^x * (ln(2))^n2^x * (ln(2))^10y = x * e^(-x)*= e^(-x) - x * e^(-x)= -e^(-x) + (x - 2)e^(-x)*-100e^(-x) + x * e^(-x)*y = sin^2(x) with 100th derivative2*sin(x)*cos(x) = sin(2x)(-1)^99 * 2^99 * cos(2x)