Jul 11, 2024
y = e^(-2x)
e^(-2x)
= e^(-2x) * (-2)
y' = -2e^(-2x)
-2
, multiply by derivative of e^(-2x)
: -2 * e^(-2x) * (-2)
y'' = (-2)^2 * e^(-2x)
(-2)^2
, multiply by derivative of e^(-2x)
: (-2)^2 * e^(-2x) * (-2)
y''' = (-2)^3 * e^(-2x)
y^(n) = (-2)^n * e^(-2x)
(-2)^100
involves an even power, it can be written simply as 2^100
.y = sin(3x)
sin(3x)
= cos(3x) * 3
y' = 3cos(3x)
3cos(3x)
= 3(-sin(3x) * 3)
y'' = -3^2 * sin(3x)
-3^2 * sin(3x)
= -3^2 * cos(3x) * 3
y''' = -3^3 * cos(3x)
-3^3 * cos(3x)
= -3^3 * (-sin(3x) * 3)
y'''' = 3^4 * sin(3x)
(-1)^(99/4) * 3^99 * cos(3x)
y = 2^x
2^x = 2^x * ln(2)
2^x * (ln(2))^2
2^x * (ln(2))^3
d^n(y) = 2^x * (ln(2))^n
2^x * (ln(2))^10
y = x * e^(-x)
= e^(-x) - x * e^(-x)
= -e^(-x) + (x - 2)e^(-x)
-100e^(-x) + x * e^(-x)
y = sin^2(x)
with 100th derivative2*sin(x)*cos(x)
= sin(2x)
(-1)^99 * 2^99 * cos(2x)