Jul 25, 2024
Definition: Measures how much acid molecules dissociate in a water solution.
Expression: For an acid HA, dissociating in water:
HA \leftrightharpoons H^+ + A^-
K_a = \frac{[H^+][A^-]}{[HA]}
Interpretation:
Write dissociation reactions and $K_a$ expressions:
Nitrous acid (HNO_2):
HNO_2 \leftrightharpoons H^+ + NO_2^-
K_a = \frac{[H^+][NO_2^-]}{[HNO_2]}
Acetic acid (CH_3COOH):
CH_3COOH \leftrightharpoons H^+ + CH_3COO^-
K_a = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]}
Phosphoric acid (H_3PO_4):
H_3PO_4 \leftrightharpoons H^+ + H_2PO_4^-
K_{a1} = \frac{[H^+][H_2PO_4^-]}{[H_3PO_4]}
Identify the weakest acid:
Definition: Measures how much base molecules dissociate in a water solution.
Expression: For a base B, dissociating in water:
B + H_2O \leftrightharpoons BH^+ + OH^-
K_b = \frac{[BH^+][OH^-]}{[B]}
Interpretation:
Example: Formate ion ($HCOO^-)$:
HCOO^- + H_2O \leftrightharpoons HCOOH + OH^-
K_b = \frac{[HCOOH][OH^-]}{[HCOO^-]}
Expression:
K_w = [H^+][OH^-] = 1.0 \times 10^{-14} at 25°C.
Implications:
Given: $[OH^-] = 1.0 \times 10^{-5}$ at 25°C.
Find: $[H^+]$.
Solution:
[H^+] = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-5}} = 1.0 \times 10^{-9}
Interpretation:
Neutral Solution Criteria: $[H^+] = [OH^-] = 1.0 \times 10^{-7}$ at 25°C.