Jul 25, 2024
Definition: Measures how much acid molecules dissociate in a water solution.
Expression: For an acid HA, dissociating in water:
$$HA \leftrightharpoons H^+ + A^-$$
$$K_a = \frac{[H^+][A^-]}{[HA]}$$
Interpretation:
Write dissociation reactions and $K_a$ expressions:
Nitrous acid (HNO_2):
$$HNO_2 \leftrightharpoons H^+ + NO_2^-$$
$$K_a = \frac{[H^+][NO_2^-]}{[HNO_2]}$$
Acetic acid (CH_3COOH):
$$CH_3COOH \leftrightharpoons H^+ + CH_3COO^-$$
$$K_a = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]}$$
Phosphoric acid (H_3PO_4):
$$H_3PO_4 \leftrightharpoons H^+ + H_2PO_4^-$$
$$K_{a1} = \frac{[H^+][H_2PO_4^-]}{[H_3PO_4]}$$
Identify the weakest acid:
Definition: Measures how much base molecules dissociate in a water solution.
Expression: For a base B, dissociating in water:
$$B + H_2O \leftrightharpoons BH^+ + OH^-$$
$$K_b = \frac{[BH^+][OH^-]}{[B]}$$
Interpretation:
Example: Formate ion ($HCOO^-)$:
$$HCOO^- + H_2O \leftrightharpoons HCOOH + OH^-$$
$$K_b = \frac{[HCOOH][OH^-]}{[HCOO^-]}$$
Expression:
$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$$ at 25°C.
Implications:
Given: $[OH^-] = 1.0 \times 10^{-5}$ at 25°C.
Find: $[H^+]$.
Solution:
$$[H^+] = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-5}} = 1.0 \times 10^{-9}$$
Interpretation:
Neutral Solution Criteria: $[H^+] = [OH^-] = 1.0 \times 10^{-7}$ at 25°C.