📘

Acid and Base Dissociation Constants (Ka and Kb)

Jul 25, 2024

Acid and Base Dissociation Constants (Ka and Kb)

Acid Dissociation Constant (Ka)

  • Definition: Measures how much acid molecules dissociate in a water solution.

  • Expression: For an acid HA, dissociating in water:

    HA \leftrightharpoons H^+ + A^-

    K_a = \frac{[H^+][A^-]}{[HA]}

  • Interpretation:

    • Larger $K_a$ value: Stronger acid (more dissociation).
    • Smaller $K_a$ value: Weaker acid (less dissociation).

Using Data to Calculate Ka

  • Use equilibrium concentrations (final data), not initial data.
  • Example: If $[H^+] = 0.2$, $[A^-] = 0.2$, and $[HA] = 0.8$, then use these in the $K_a$ expression.

Exercises

  1. Write dissociation reactions and $K_a$ expressions:

    • Nitrous acid (HNO_2):

      HNO_2 \leftrightharpoons H^+ + NO_2^-

      K_a = \frac{[H^+][NO_2^-]}{[HNO_2]}

    • Acetic acid (CH_3COOH):

      CH_3COOH \leftrightharpoons H^+ + CH_3COO^-

      K_a = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]}

    • Phosphoric acid (H_3PO_4):

      H_3PO_4 \leftrightharpoons H^+ + H_2PO_4^-

      K_{a1} = \frac{[H^+][H_2PO_4^-]}{[H_3PO_4]}

      • Only the first proton dissociation is considered here for $K_{a1}$.
  2. Identify the weakest acid:

    • Compare $K_a$ values; the smallest $K_a$ indicates the weakest acid.
    • Example: Acetic acid $K_a = 1.8 \times 10^{-5}$ (weak acid).

Base Dissociation Constant (Kb)

  • Definition: Measures how much base molecules dissociate in a water solution.

  • Expression: For a base B, dissociating in water:

    B + H_2O \leftrightharpoons BH^+ + OH^-

    K_b = \frac{[BH^+][OH^-]}{[B]}

  • Interpretation:

    • Larger $K_b$ value: Stronger base.
    • Smaller $K_b$ value: Weaker base.
  • Example: Formate ion ($HCOO^-)$:

    HCOO^- + H_2O \leftrightharpoons HCOOH + OH^-

    K_b = \frac{[HCOOH][OH^-]}{[HCOO^-]}

Ion Product Constant (Kw)

  • Expression:

    K_w = [H^+][OH^-] = 1.0 \times 10^{-14} at 25°C.

  • Implications:

    • Neutral solution: $[H^+] = [OH^-] = 1.0 \times 10^{-7}$ (pH 7).
    • Acidic solution: $[H^+] > [OH^-]$.
    • Basic solution: $[H^+] < [OH^-]$.

Example Calculations

  1. Given: $[OH^-] = 1.0 \times 10^{-5}$ at 25°C.

  2. Find: $[H^+]$.

  3. Solution:

    [H^+] = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-5}} = 1.0 \times 10^{-9}

  4. Interpretation:

    • Higher $[OH^-]$ than $[H^+]$: Basic solution.
  5. Neutral Solution Criteria: $[H^+] = [OH^-] = 1.0 \times 10^{-7}$ at 25°C.