Coconote
AI notes
AI voice & video notes
Export note
Try for free
Trigonometric Half-Angle Formulas
Jun 25, 2024
Lecture on Trigonometric Half-Angle Formulas
Half-Angle Formula for Sine
Power Reducing Formula
:
( \sin^2 \theta = \frac{1 - \cos 2\theta}{2} )
Dividing angle by 2: ( \sin^2 \left( \frac{\theta}{2} \right) = \frac{1 - \cos \theta}{2} )
Half-Angle Formula
:
Take the square root of both sides: ( \sin \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1 - \cos \theta}{2}} )
Result: ( \sin \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1 - \cos \theta}{2}} )
Half-Angle Formula for Cosine
Power Reducing Formula
:
( \cos^2 \theta = \frac{1 + \cos 2\theta}{2} )
Dividing angle by 2: ( \cos^2 \left( \frac{\theta}{2} \right) = \frac{1 + \cos \theta}{2} )
Half-Angle Formula
:
Take the square root of both sides: ( \cos \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1 + \cos \theta}{2}} )
Result: ( \cos \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1 + \cos \theta}{2}} )
Half-Angle Formula for Tangent
Definition: ( \tan \left( \frac{\theta}{2} \right) = \frac{\sin \left( \frac{\theta}{2} \right)}{\cos \left( \frac{\theta}{2} \right)} )
Applying formulas for sine and cosine:
( \tan \left( \frac{\theta}{2} \right) = \frac{\pm \sqrt{\frac{1 - \cos \theta}{2}}}{\pm \sqrt{\frac{1 + \cos \theta}{2}}} )
Simplifying: ( \tan \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} )
Alternative forms:
( \tan \left( \frac{\theta}{2} \right) = \frac{1 - \cos \theta}{\sin \theta} )
( \tan \left( \frac{\theta}{2} \right) = \frac{\sin \theta}{1 + \cos \theta} )
Example Problems
Example 1: Evaluate ( \cos(15°) )
Using the half-angle formula for cosine:
( \cos \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1 + \cos \theta}{2}} )
Set ( \theta / 2 = 15° ) -> ( \theta = 30° )
Plugging in ( \theta = 30° ): ( \cos (15°) = \pm \sqrt{\frac{1 + \cos(30°)}{2}} )
( \cos(30°) = \frac{\sqrt{3}}{2} )
Simplifying:
( \cos (15°) = \pm \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{2}} )
Multiply top and bottom by 2 inside the square root:
Numerator: ( 2 + \sqrt{3} )
Denominator: 4
Result: ( \cos (15°) = \pm \frac{\sqrt{2 + \sqrt{3}}}{2} )
Determining the sign:
In quadrant I, ( \cos(15°) > 0 )
Final answer: ( \cos (15°) = \frac{\sqrt{2 + \sqrt{3}}}{2} )
Example 2: Evaluate ( \sin(22.5°) )
Using the half-angle formula for sine:
( \sin \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1 - \cos \theta}{2}} )
Set ( \theta / 2 = 22.5° ) -> ( \theta = 45° )
Plugging in ( \theta = 45° ): ( \sin(22.5°) = \pm \sqrt{\frac{1 - \cos(45°)}{2}} )
( \cos(45°) = \frac{\sqrt{2}}{2} )
Simplifying:
( \sin (22.5°) = \pm \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{2}} )
Multiply top and bottom by 2 inside the square root:
Numerator: ( 2 - \sqrt{2} )
Denominator: 4
Result: ( \sin (22.5°) = \pm \frac{\sqrt{2 - \sqrt{2}}}{2} )
Determining the sign:
In quadrant I, ( \sin(22.5°) > 0 )
Final answer: ( \sin (22.5°) = \frac{\sqrt{2 - \sqrt{2}}}{2} )
Example 3: Evaluate ( \tan(75°) )
Using the alternative half-angle formula for tangent:
( \tan \left( \frac{\theta}{2} \right) = \frac{1 - \cos \theta}{\sin \theta} )
Set ( \theta / 2 = 75° ) -> ( \theta = 150° )
Plugging in ( \theta = 150° ): ( \tan (75°) = \frac{1 - \cos (150°)}{\sin (150°)} )
( \cos(150°) = - \frac{\sqrt{3}}{2} ) (since 150° is in quadrant II)
( \sin(150°) = \frac{1}{2} )
Simplifying:
( \tan (75°) = \frac{1 + \frac{\sqrt{3}}{2}}{\frac{1}{2}} )
Multiply top and bottom by 2:
Numerator: ( 2 + \sqrt{3} )
Denominator: 1
Final answer: ( \tan (75°) = 2 + \sqrt{3} )
📄
Full transcript