Coconote
AI notes
AI voice & video notes
Export note
Try for free
L25
Sep 20, 2024
Lecture Notes on Normal and Exponential Distributions
Recap of Normal Distributions
Probability Density Function (PDF):
Formula: ( f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} )
Parameters: ( \mu ) (mean) and ( \sigma^2 ) (variance)
Symmetric distribution: mean = median = mode
Standard Normal Variable (Z):
Formula: ( Z = \frac{X - \mu}{\sigma} )
Mean = 0, Variance = 1
Cumulative Distribution Function (CDF): ( \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{y^2}{2}} dy )
Symmetry: ( \Phi(-x) = 1 - \Phi(x) )
Combining Normal Variables
Sum of Normal Random Variables:
If ( X_i ) are independent normal variables with means ( \mu_i ) and variances ( \sigma_i^2 ), then ( \sum X_i ) is also normal.
Mean of ( \sum X_i = \sum \mu_i )
Variance of ( \sum X_i = \sum \sigma_i^2 )
Examples
Rainfall Probability (2 Years):
Yearly rainfall: Normal with ( \mu=12 \text{cm}, \sigma=3 \text{cm} )
Probability of total rainfall over 2 years > 25cm: Use sum and convert to standard normal.
Yearly Rainfall Comparison:
Probability of current year exceeding next year by > 3cm.
Exponential Distribution
PDF and CDF:
( f(x) = \lambda e^{-\lambda x} ) for ( x \geq 0 )
CDF: ( F(x) = 1 - e^{-\lambda x} )
Memoryless Property: ( P(X > t+s | X > t) = P(X > s) )
Moment Generating Function
( M(t) = \int_0^\infty e^{tx} \lambda e^{-\lambda x} dx = \frac{\lambda}{\lambda - t} )
Mean: ( E(X) = \frac{1}{\lambda} )
Variance: ( Var(X) = \frac{1}{\lambda^2} )
Example
Battery Life:
Exponentially distributed with average life of 10,000 km.
Probability of lasting > 5,000 km: Use memoryless property.
Conclusion
Discussed various random variables in previous lectures.
Next topic: Sampling distributions.
📄
Full transcript