🔄

Composing Trigonometric Functions and Inverses

May 1, 2025

2.4.3: Composition of Trig Functions and Their Inverses

Overview

  • Exploration of how to compose trigonometric functions with their inverses.
  • Consideration of applying inverse trig functions to different trig functions.
  • Example problem discussed: Finding ( \sin^{-1}(\cos(32)) ).

Trigonometric Functions and Their Inverses

  • Fundamental property: ( f(f^{-1}(x)) = x ) for defined values.
  • Applied to trigonometric functions:
    • ( \sin(\sin^{-1}(x)) = x )
    • ( \cos(\cos^{-1}(x)) = x )
    • ( \tan(\tan^{-1}(x)) = x )
  • Conversely, ( f^{-1}(f(x)) = x ) only holds within restricted domains:
    • ( \sin^{-1}(\sin(x)) = x )
    • ( \cos^{-1}(\cos(x)) = x )
    • ( \tan^{-1}(\tan(x)) = x )

Composite Functions

  • Composite functions involve one trig function with another different one.
  • These functions become algebraic, not trigonometric.

Examples

  1. ( \sin(\sin^{-1}22) ):

    • ( \sin^{-1}22 = 22 ), hence ( \sin(\sin^{-1}22) = 22 ).
  2. ( \cos(\tan^{-1}13) ):

    • ( \tan^{-1}13 = 3 ), thus ( \cos(\tan^{-1}13) = 12 ).
  3. ( \tan(\sin^{-1}12) ):

    • ( \tan(6) = 33 ).
  4. ( \cos(\tan^{-1}1) ):

    • ( \cos(\tan^{-1}1) = 22 ).
  5. ( \sin(\cos^{-1}22) ):

    • ( \sin(\cos^{-1}22) = 22 ).

Example Problem Solutions

  • ( \sin^{-1}(\cos(32)) ):

    • First find ( \cos(32) = 0 ).
    • Then ( \sin^{-1}0 = 0 ).
  • ( \cos^{-1}32 ):

    • Solution given as 6.
  • ( \sin(\cos^{-1}15/13) ):

    • Solves to ( 12/13 ).
  • ( \tan(\sin^{-1}6/11) ):

    • Solution involves geometric consideration of right triangle:
    • Third side calculated, final tan value given as ( 68/85 ).

Review Problems

  • Without technology, find exact values:
    1. ( \sin(\sin^{-1}12) )
    2. ( \cos(\cos^{-1}32) )
    3. ( \tan(\tan^{-1}3) )
    4. ( \cos(\sin^{-1}12) )
    5. ( \tan(\cos^{-1}1) )
    6. ( \sin(\cos^{-1}22) )
    7. ( \sin^{-1}(\sin2) )
    8. ( \cos^{-1}(\tan4) )
    9. ( \tan^{-1}(\sin) )
    10. ( \sin^{-1}(\cos3) )
    11. ( \cos^{-1}(\sin4) )
    12. ( \tan(\sin10) )
    13. ( \sin(\cos^{-1}32) )
    14. ( \tan^{-1}(\cos2) )
    15. ( \cos(\sin^{-1}22) )

Vocabulary

  • Composite function: A function formed by using the output of one function as the input of another.

Additional Resources

  • Video and practice available for deeper understanding and application of compositions of trig functions and their inverses.