Lecture on Integration

Jul 19, 2024

Lecture on Integration

Introduction to Integration

  • Focus: Finding the antiderivative of functions.
  • Key principle: Power Rule for Integration.

Power Rule (Anti-Derivative)

  • Power Rule for Derivatives:
    • If f(x) = x^n, then f'(x) = nx^(n-1).
  • Power Rule for Integration:
    • If F'(x) = x^n, then F(x) = (x^(n+1))/(n+1) + C.
    • Key difference: Instead of subtracting the exponent by 1, add 1 to the exponent and divide by the new exponent. Add a constant of integration C.

Examples Using Power Rule

  1. Finding Antiderivative of 3x^2:
    • 3x^2x^3 + C
  2. Finding Antiderivative of x^4:
    • x^4(x^5)/5 + C
    • Simplified: 1/5 x^5 + C
  3. Antiderivatives of x^2 and x^7:
    • x^2(x^3)/3 + C
    • x^7(x^8)/8 + C

Special Cases

  • Antiderivative of x:
    • x(x^2)/2 + C
  • Antiderivative of Fraction (x/4):
    • x/41/4 * (x^2)/2 + C(x^2)/8 + C
  • **Antiderivative of Polynomial with Constants: `8x^3 **
    • 8x^32x^4 + C
  • Antiderivative of Constants (4, -7):
    • 4 → 4x + C
    • -7 → -7x + C

Binomials and Trinomials

  • Example Binomial: 7x - 6:
    • 7x - 6(7x^2)/2 - 6x + C
  • Example Trinomial: 6x^2 + 4x - 7:
    • 6x^2 + 4x - 72x^3 + 2x^2 - 7x + C

Radical Functions

  • Antiderivative of √x:
    • Rewrite as x^(1/2).
    • (x^(3/2)) * (2/3) + C
  • Antiderivative of Cube Root:
    • x^(4/3)(x^(7/3)) * (3/7) + C
  • Fourth Root:
    • x^(7/4)(x^(11/4)) * (4/11) + C

Trigonometric Functions

  • Common Derivatives and Their Antiderivatives:
    • d/dx [sin x] = cos x∫ cos x dx = sin x + C
    • d/dx [cos x] = -sin x∫ -sin x dx = cos x + C
    • d/dx [tan x] = sec^2 x∫ sec^2 x dx = tan x + C
    • d/dx [cot x] = -csc^2 x∫ -csc^2 dx = cot x + C
    • d/dx [sec x] = sec x tan x∫ sec x tan x dx = sec x + C
    • d/dx [csc x] = -csc x cot x∫ csc x cot x dx = -csc x + C
  • Example:
    • 4 sin x - 5 cos x + 3 sec^2 x-4 cos x - 5 sin x + 3 tan x + C

Indefinite vs. Definite Integrals

  • Indefinite Integral: Results in a function of x, plus C.
  • Definite Integral: Calculated with bounds; results in a numerical value.
  • Example:
    • ∫ 6x^2 dx2x^3 + C
    • ∫ from 1 to 2 of 6x^2 dx14
    • Implemented using the Fundamental Theorem of Calculus:
      • ∫ from a to b f(x) dx = F(b) - F(a)

Exponential Functions

  • Derivative and Antiderivative:
    • d/dx [e^u] = e^u * u'
    • ∫ e^u du = e^u / u' + C
  • Examples:
    • ∫ e^x dx = e^x + C
    • ∫ e^5x dx = (e^5x)/5 + C
    • Using substitution:
      • 4x e^(x^2) dx → 2 e^(x^2) + C

Rational Functions and U-substitution

  • Example Rational Anti-derivatives:
    • ∫ (1/x^2) dx-1/x + C
    • ∫ (1/x^3) dx- (1/2x^2) + C
    • ∫ (8/x^4) dx- (8/3x^3) + C
  • Using U-substitution:
    • ∫ (1/(4x - 3)^2) dx → - (1/(4(4x - 3))) + C
    • ∫ (7/(5x - 3)^4) dx → - (7/(15(5x - 3)^3)) + C

Natural Logarithms (ln)

  • Antiderivative of 1/x:
    • ∫ (1/x) dx = ln|x| + C
  • Examples:
    • ∫ (7/x) dx = 7 ln|x| + C
    • ∫ (1/(x + 5)) dx = ln|x + 5| + C
    • Using substitution: Get same results as direct methods.

Summary

  • Practice antiderivatives using rules and substitutions.
  • Apply knowledge to polynomials, radicals, exponentials, and trig functions.