Jul 11, 2024
A =
[i n d i a]
[j a p a n]
A (2x5)
A = [2 3 4]
[3 4 5]
[4 5 6]
a(i,j)
with i
denoting the row and j
denoting the column number.A = [a11 a12 a13]
[0 a22 a23]
[0 0 a33]
A = [a11 0 0]
[a21 a22 0]
[a31 a32 a33]
A = [a11 0 0]
[0 a22 0]
[0 0 a33]
A = k * I
k=1
k=0
A = [a11 a12 a13]
[a12 a22 a23]
[a13 a23 a33]
A = -A^T
.
A = [0 -a12 -a13]
[a12 0 -a23]
[a13 a23 0]
A
is orthogonal if A * A^T = I
.
Example:
A = [cosθ -sinθ 0]
[sinθ cosθ 0]
[0 0 1]
A
is involutory if A^2 = I
.
Example:
A = [4 -1]
[15 -4]
A
is idempotent if A^2 = A
.
Example:
A = [4 -3]
[12 -9]
A
is nilpotent if there exists some positive integer k
such that A^k = 0
.
Example:
A = [2 -1]
[4 -2]
A (MxN)
and B (PxQ)
can be multiplied if N = P
.M x Q
.A = [1 2 3]
[4 5 6]
B = [7 8]
[9 10]
[11 12]
A * B = [1*7 + 2*9 + 3*11 1*8 + 2*10 + 3*12]
[4*7 + 5*9 + 6*11 4*8 + 5*10 + 6*12]
(A * B) * C = A * (B * C)
A * B ≠ B * A
k(A * B) = (kA) * B = A * (kB)
det(A^T) = det(A)
.det(AB) = det(A) * det(B)
.A * X = B
rank(A) = rank(A|B) = number of unknowns
rank(A) = rank(A|B) < number of unknowns
rank(A) ≠ rank(A|B)
A * X = 0
X = 0
det(A) = 0
rank(A) ≤ min(M, N)
for an MxN matrix.rank(A) = rank(A^T)
rank(A * B) ≤ min(rank(A), rank(B))
A
, if A * v = λ * v
for a scalar λ
and a non-zero vector v
, then λ
is an eigenvalue and v
is the eigenvector.det(A - λI) = 0
A
and A^T
are the same.