Oct 12, 2024
Circles
r = a cos(θ)
or r = a sin(θ)
a
: Circle on the righta
: Circle on the lefta
: Circle above x-axisa
: Circle below x-axisa
, Radius = a/2
r = 4 cos(θ)
forms a circle with diameter 4πr²
where r = a/2
Limaçons
r = a ± b cos(θ)
or r = a ± b sin(θ)
a/b
ratio:
a/b < 1
a/b = 1
1 < a/b < 2
a/b ≥ 2
cos(θ)
: Opens rightcos(θ)
: Opens leftsin(θ)
: Opens upsin(θ)
: Opens downRose Curves
r = a sin(nθ)
or r = a cos(nθ)
n
: 2n
petalsn
: n
petalsn
is evenr = 2 sin(3θ)
creates a rose with 3 petalsLemniscates
r² = a² cos(2θ)
r² = a² sin(2θ)
r
represents radial distance, θ
angle from the polar axisa
or the function (cosine vs. sine).