Oct 12, 2024
Circles
r = a cos(θ) or r = a sin(θ)a: Circle on the righta: Circle on the lefta: Circle above x-axisa: Circle below x-axisa, Radius = a/2r = 4 cos(θ) forms a circle with diameter 4πr² where r = a/2Limaçons
r = a ± b cos(θ) or r = a ± b sin(θ)a/b ratio:
a/b < 1a/b = 11 < a/b < 2a/b ≥ 2cos(θ): Opens rightcos(θ): Opens leftsin(θ): Opens upsin(θ): Opens downRose Curves
r = a sin(nθ) or r = a cos(nθ)n: 2n petalsn: n petalsn is evenr = 2 sin(3θ) creates a rose with 3 petalsLemniscates
r² = a² cos(2θ)r² = a² sin(2θ)r represents radial distance, θ angle from the polar axisa or the function (cosine vs. sine).