Coconote
AI notes
AI voice & video notes
Export note
Try for free
Trigonometric Substitution for Integrals
Aug 31, 2024
Indefinite Integral of ( \frac{1}{\sqrt{3 - 2x^2}} )
Overview
The integral ( \int \frac{1}{\sqrt{3 - 2x^2}} , dx ) is not straightforward because no traditional method such as direct substitution applies.
Use trigonometric substitution by leveraging trigonometric identities.
Trigonometric Identity
Basic identity: ( \sin^2(\theta) + \cos^2(\theta) = 1 )
By manipulation: ( \cos^2(\theta) = 1 - \sin^2(\theta) )
Steps for Solution
Factor and Rewrite
Factor out 3 from the denominator:
( 3 - 2x^2 = 3(1 - \frac{2}{3}x^2) )
Trigonometric Substitution
Set ( \frac{2}{3}x^2 = \sin^2(\theta) )
Solve for x and ( \theta ):
( \sqrt{\frac{2}{3}}x = \sin(\theta) )
( \theta = \arcsin\left(\sqrt{\frac{2}{3}}x\right) )
( x = \sqrt{\frac{3}{2}} \sin(\theta) )
Differentiate for dx
Find ( dx ) in terms of ( d\theta ):
( \frac{dx}{d\theta} = \sqrt{\frac{3}{2}} \cos(\theta) )
( dx = \sqrt{\frac{3}{2}} \cos(\theta) , d\theta )
Substitute into Integral
Substitute ( x ) and ( dx ):
Replace dx: ( \sqrt{\frac{3}{2}} \cos(\theta) , d\theta )
Replace denominator: ( \sqrt{3 \cdot \cos^2(\theta)} )
Simplify and Integrate
Cancel out terms: ( \cos(\theta) ) and ( \sqrt{3} )
Integral simplifies to:
( \int \frac{1}{\sqrt{2}} , d\theta )
Equals: ( \frac{1}{\sqrt{2}} (\theta + C) )
Reverse Substitution
Substitute back ( \theta ) with x:
( \theta = \arcsin\left(\sqrt{\frac{2}{3}}x\right) )
Final result: ( \frac{1}{\sqrt{2}} \arcsin\left(\sqrt{\frac{2}{3}}x\right) + C )
Conclusion
The antiderivative of ( \frac{1}{\sqrt{3 - 2x^2}} ) is ( \frac{1}{\sqrt{2}} \arcsin\left(\sqrt{\frac{2}{3}}x\right) + C ).
Understanding trigonometric identities and substitutions can simplify complex integrals.
📄
Full transcript