Coconote
AI notes
AI voice & video notes
Export note
Try for free
Understanding the Domain of Functions
Jul 28, 2024
Finding the Domain of Functions
1. Linear Functions
Example:
2x - 7
Domain
: All real numbers
In interval notation: (-∞, ∞)
2. Polynomial Functions
Example:
x² + 3x - 5
Domain
: All real numbers
Example:
2x³ - 5x² + 7x - 3
Domain
: All real numbers
3. Rational Functions
Example:
5/(x - 2)
Domain
: All real numbers except where denominator is zero
Set denominator not equal to 0: x - 2 ≠ 0
Result
: x ≠ 2
In interval notation: (-∞, 2) ∪ (2, ∞)
Example Problem 2:
(3x - 8)/(x² - 9x + 20)
Set denominator not equal to 0: x² - 9x + 20 ≠ 0
Factor the quadratic: (x - 4)(x - 5) ≠ 0
x ≠ 4, x ≠ 5
Domain
: (-∞, 4) ∪ (4, 5) ∪ (5, ∞)
Example Problem 3:
(2x - 3)/(x² + 4)
Set denominator not equal to 0: x² + 4 ≠ 0
Impossible since x² is always non-negative
Domain
: All real numbers (−∞, ∞)
4. Square Root Functions
Example:
√(x - 4)
Set inside greater than or equal to 0: x - 4 ≥ 0
Result
: x ≥ 4
In interval notation: [4, ∞)
Example Problem 4:
√(x² + 3x - 28)
Set inside greater than or equal to 0: x² + 3x - 28 ≥ 0
Factor: (x - 4)(x + 7) ≥ 0
x ≥ 4 or x ≤ -7
Check intervals:
Domain
: (-∞, -7] ∪ [4, ∞)
5. Square Roots in Denominator
Example:
1/√(x + 3)
Inside must be > 0: x + 3 > 0
Result
: x > -3
Domain
: (-3, ∞)
6. Square Roots in Both Numerator and Denominator
Example:
√(x + 3)/√(x² - 16)
Numerator: x + 3 ≥ 0 -> x ≥ -3
Denominator: x² - 16 > 0; factors as (x + 4)(x - 4) > 0
Restrictions
: x < -4 or x > 4
Intersection of Domains
Combine results:
x ≥ -3, x < -4 or x > 4
Valid region: Only x > 4
Domain
: (4, ∞)
Summary
Understanding how to find domains for different types of functions: linear, polynomial, rational, and square root functions is crucial in algebra.
Carefully analyze each component (numerator, denominator, and inside square roots) to determine all restrictions.
📄
Full transcript