Lecture Notes: Fundamental Trigonometric Identities
In this lecture, we discussed the fundamental trigonometric identities and applied them to solve a problem.
Definition
- Identity: An equation that is true for all values of the variable.
- In trigonometry, these equations remain valid for any angle θ where the function is defined.
Fundamental Trigonometric Identities
Reciprocal Identities
- Cosecant (csc) Identity
- Secant (sec) Identity
- Cotangent (cot) Identity
Quotient Identities
- Tangent (tan) Identity
- Cotangent (cot) Identity
Example Problem
Given:
- sin(θ) = sqrt10 / 10
- cos(θ) = 3sqrt{10 / 10
Find the Four Remaining Trigonometric Functions
-
Cosecant (csc θ)
- (\csc(θ) = \frac{1}{\sin(θ)} = \frac{1}{\left(\frac{\sqrt{10}}{10}\right)} = \frac{10}{\sqrt{10}})
- Rationalize: (\frac{10}{\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}} = \sqrt{10})
-
Secant (sec θ)
- (\sec(θ) = \frac{1}{\cos(θ)} = \frac{1}{\left(\frac{3\sqrt{10}}{10}\right)} = \frac{10}{3\sqrt{10}})
- Rationalize: (\frac{10}{3\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}} = \frac{\sqrt{10}}{3})
-
Tangent (tan θ)
- (\tan(θ) = \frac{\sin(θ)}{\cos(θ)} = \frac{\frac{\sqrt{10}}{10}}{\frac{3\sqrt{10}}{10}})
- Simplify: (\frac{\sqrt{10}}{10} \times \frac{10}{3\sqrt{10}} = \frac{1}{3})
-
Cotangent (cot θ)
- Using Reciprocal Identity: (\cot(θ) = \frac{1}{\tan(θ)} = \frac{1}{\frac{1}{3}} = 3)
Conclusion
- We successfully found the values of the remaining trigonometric functions using the fundamental identities.
Good Luck!