Discrete Mathematics: Propositions and Connectives

Jul 19, 2024

Discrete Mathematics: Propositions and Connectives

Introduction

  • Lecture Focus: Propositions, negations, conjunctions, disjunctions.
  • Key Tool: Truth tables.
  • Terminology: Proposition - A declarative statement that is either true or false.

Propositions

  • Definition: Declarative statements that are either true or false.
  • Examples:
    • "The sky is blue" - True (Proposition P)
    • "The moon is made of cheese" - False (Proposition Q)
    • "Luke, I am your father" - False (Proposition R)
  • Non-Examples:
    • "Sit down" - Command, not true/false.
    • "X + 1 = 2" - Requires value for X to be a proposition.

Connectives (Operators)

  • Types:
    • Negation (~P): Not P
    • Conjunction (P ∧ Q): P and Q
    • Disjunction (P ∨ Q): P or Q
    • Implication (P -> Q): If P then Q
    • Biconditional (P <-> Q): P if and only if Q

Negation

  • Definition: Negation of P is "not P" (~P).
  • Examples:
    • P: "The grass is green"
    • ~P: "The grass is not green"
    • P: "My dog is the cutest dog" - True
    • ~P: "My dog is not the cutest dog"
  • Truth Table:
    • P = True -> ~P = False
    • P = False -> ~P = True

Truth Tables

  • Purpose: Show all combinations of truth values for propositions.
  • Setup:
    • Left side: All combinations of truth values for propositions.
    • Right side: Results of applying connectives.
  • Example 1: For a single proposition P:
    • P = True, ~P = False
    • P = False, ~P = True
  • Example 2: For two propositions P and Q:
    • Rows: 2^2 = 4
    • P and Q combinations:
      • True, True
      • True, False
      • False, True
      • False, False

Conjunction (AND)

  • Definition: Both P and Q must be true (P ∧ Q).
  • Example:
    • P: "It is raining"
    • Q: "I am home"
  • Truth Table:
    • P = True, Q = True -> P ∧ Q = True
    • P = True, Q = False -> P ∧ Q = False
    • P = False, Q = True -> P ∧ Q = False
    • P = False, Q = False -> P ∧ Q = False

Disjunction (OR)

  • Definition: Either P or Q must be true (P ∨ Q).
  • Truth Table:
    • P = True, Q = True -> P ∨ Q = True
    • P = True, Q = False -> P ∨ Q = True
    • P = False, Q = True -> P ∨ Q = True
    • P = False, Q = False -> P ∨ Q = False
  • Inclusive OR: Either or both can be true.
  • Exclusive OR (XOR): Only one can be true, not both.
    • Truth Table:
      • P = True, Q = True -> P XOR Q = False
      • P = True, Q = False -> P XOR Q = True
      • P = False, Q = True -> P XOR Q = True
      • P = False, Q = False -> P XOR Q = False

Next Topics

  • Upcoming: Implications and Biconditionals, converse, inverse, and contrapositive of implications.