Indefinite Integral with Trigonometric Substitution

Oct 11, 2024

Evaluating an Indefinite Integral Using Trigonometric Substitution

Introduction

  • Goal: Evaluate an indefinite integral with a square root in the denominator.
  • Noticing a pattern: Square root resembles a Pythagorean identity (used in right triangles).
  • Insight: Recognize square root of 4 - x^2 as a non-hypotenuse side in a right triangle.

Setting up the Problem

  • Consider the hypotenuse of length 2 and one side of length x in a right triangle.
  • Use Pythagorean theorem:
    • Other side length = sqrt(4 - x^2)

Trigonometric Substitution

  • Triangle setup:
    • Hypotenuse = 2
    • One side = x
    • Other side = sqrt(4 - x^2)
  • Using theta as an angle in the triangle:
    • Sine function: sin(theta) = x/2 -> x = 2 * sin(theta)
    • Cosine function: cos(theta) = sqrt(4 - x^2) / 2
      • Therefore, sqrt(4 - x^2) = 2 * cos(theta)

Performing Substitution in the Integral

  • Substituting x = 2 * sin(theta):
    • dx = 2 * cos(theta) dtheta
  • Substituting into the integral:
    • Numerator: dx = 2 * cos(theta) dtheta
    • Denominator: sqrt(4 - x^2) = 2 * cos(theta)
  • Integral simplifies to:
    • Integral of (1 dtheta) = theta + C

Solving for theta

  • x = 2 * sin(theta)
    • sin(theta) = x/2
    • theta = arcsin(x/2)
  • Final result for the integral:
    • Integral = arcsin(x/2) + C

Domain Considerations

  • Original function domain: -2 < x < 2
  • Ensuring substitution preserves domain:
    • -1 < sin(theta) < 1 corresponds to -pi/2 < theta < pi/2
  • Ensure cosine of theta does not equal zero in the domain.

Conclusion

  • The trigonometric substitution is valid within the specified domain.
  • Result is consistent with trigonometric identity restrictions.
  • Integral successfully evaluated to arcsin(x/2) + C without domain issues.