Oct 11, 2024
4 - x^2
as a non-hypotenuse side in a right triangle.x
in a right triangle.sqrt(4 - x^2)
x
sqrt(4 - x^2)
theta
as an angle in the triangle:
sin(theta) = x/2
-> x = 2 * sin(theta)
cos(theta) = sqrt(4 - x^2) / 2
sqrt(4 - x^2) = 2 * cos(theta)
x = 2 * sin(theta)
:
dx = 2 * cos(theta) dtheta
dx = 2 * cos(theta) dtheta
sqrt(4 - x^2) = 2 * cos(theta)
Integral of (1 dtheta) = theta + C
theta
x = 2 * sin(theta)
sin(theta) = x/2
theta = arcsin(x/2)
Integral = arcsin(x/2) + C
-2 < x < 2
-1 < sin(theta) < 1
corresponds to -pi/2 < theta < pi/2
arcsin(x/2) + C
without domain issues.