Coconote
AI notes
AI voice & video notes
Export note
Try for free
Comprehensive Guide to Factoring Polynomials
Sep 29, 2024
Factoring Polynomials Lecture Notes
Overview
Discussed various methods for factoring polynomials:
Taking out the Greatest Common Factor (GCF)
Difference of Perfect Squares
Sum and Difference of Perfect Cubes
Factoring Trinomials using Substitution
Factoring by Grouping
Completing the Square using Synthetic Division
Solving difficult problems at the end
Factoring Basics
Example: Factoring a Binomial
Expression:
7x + 21
GCF:
7
7x ÷ 7 = x
21 ÷ 7 = 3
Factored Form:
7(x + 3)
Practice Problems:
Factor 8x² + 12xy²
GCF: 4xy
Result: 4xy(2x + 3y)
Factor 36x³y² - 60x⁴y³
GCF: 12x³y²
Result: 12x³y²(3 - 5xy)
Difference of Perfect Squares
Example: Factoring x² - 25
Formula:
a² - b² = (a + b)(a - b)
Factored Form:
(x + 5)(x - 5)
Practice Problems:
Factor y² - 64
Result: (y + 8)(y - 8)
Factor 8x² - 18
GCF: 2
Result: 2(4x² - 9) = 2(2x + 3)(2x - 3)
Sum and Difference of Perfect Cubes
Example: Factoring x³ + 8
Formula:
a³ + b³ = (a + b)(a² - ab + b²)
a = x, b = 2
Factored Form:
(x + 2)(x² - 2x + 4)
Example: Factoring y³ - 125
Formula for Difference:
a³ - b³ = (a - b)(a² + ab + b²)
Result: (y - 5)(y² + 5y + 25)
Factoring Trinomials Using Substitution
Example: Factor x⁴ + 7x² + 12
Substitute: a = x²
Resulting trinomial: a² + 7a + 12
Factored Form:
(a + 3)(a + 4) → (x² + 3)(x² + 4)
Practice Problems:
Factor -2x⁶ + 6x³ + 56
Substitute: a = x³
Result: -2(a² - 3a - 28)
Factoring by Grouping
Example: x³ - 2x² - 5x + 6
Possible factors: ±1, ±2, ±3, ±6
Using synthetic division with 1, get x² - x - 6 = (x + 2)(x - 3)
Final Result:
(x - 1)(x + 2)(x - 3)
Another Example: 4x³ - 8x² + 3x - 6
Grouping shows: (x - 2)(4x² + 3)
Completing the Square
Example: x² + 6x + 7
Half of 6 is 3. Square it: 9.
Adjust the equation: (x + 3)² - 2
Advanced Factoring Techniques
Example: x² - 2xy + y² - 9
Factor as (x - y)² - 9 → (x - y + 3)(x - y - 3)
Example: x²y² - y² - z² + x²z²
Rearranging helps factor as (x² - 1)(y² + z²)
Final Form: (x + 1)(x - 1)(y² + z²)
Summary
Covered a wide range of techniques for factoring polynomials.
Practice problems provided for each technique to reinforce learning.
📄
Full transcript