Coconote
AI notes
AI voice & video notes
Export note
Try for free
Understanding Simple Harmonic Motion
Sep 29, 2024
Chapter 9: Simple Harmonic Motion
Exercise 1: Displacement of an Object
Expression of displacement
:
[ x = 3.5 \sin(8\pi t + 0.25\pi) ]
where x (cm) and t (seconds).
Determine the amplitude
:
Amplitude (a) = 3.5 cm.
Finding the Period
Given
: ( \omega = 8\pi )
Formula
:
[ \omega = \frac{2\pi}{T} ]
Calculation
:
[ T = \frac{2\pi}{8\pi} = 0.25 \text{ seconds} ]
Finding the Frequency
Formula
:
[ f = \frac{1}{T} ]
Calculation
:
[ f = \frac{1}{0.25} = 4 \text{ Hz} ]
Finding the Phase Angle
Phase angle
:
[ \phi = 8\pi(0.02) + 0.25\pi = 0.41\pi \text{ radians} ]
Finding the Displacement
Displacement equation
:
[ x = 3.5 \sin(8\pi(0.02) + 0.25\pi) ]
Calculation
:
[ x \approx 3.4 \text{ cm} ]
Ensure calculator is in radians mode.
Exercise 2: Vertical Spring Motion
Given
:
Stretched distance: 8.8 cm (Amplitude)
Period: 0.66 seconds.
Finding Displacement after 1.8 seconds
:
Equation
:
[ x = -8.8 \cos(\omega t) ]
where ( \omega = \frac{2\pi}{T} = 3.03\pi ).
Calculation
:
[ x = -8.8 \cos(3.03\pi \times 1.8) \approx 2.72 \text{ cm} ]
Exercise 3: Particle Motion
Given
:
Completes 20 cycles in 2 seconds.
Amplitude = 3 cm.
Finding angular frequency
:
( \omega = \frac{20 \times 2\pi}{2} = 20\pi ext{ radians/second} )
Displacement equation
:
[ x = 3 \sin(20\pi t) ]
Displacement at t = 1/16 seconds
Calculation
:
[ x \approx -2.1 \text{ cm} ]
Finding time for x = 1.5 cm
Substituting in equation
:
[ 1.5 = 3 \sin(20\pi t) ]
Calculation
:
[ t \approx 8.33 \times 10^{-3} ext{ seconds} ]
Exercise 4: Force vs Displacement
Given
: Mass = 0.15 kg; Force vs Displacement graph.
Relationship
:
[ F = m a ]
[ a = -\omega^2 x ]
Finding frequency
:
Determine omega from ( F = 3 ext{ N} ) and ( x = -0.2 ext{ m} ).
Calculation
:
[ \omega = 10 \text{ radians/second} ]
Frequency
:
[ f = \frac{10}{2\pi} \approx 1.6 \text{ Hz} ]
Finding amplitude
:
Maximum displacement = 0.2 m (greater than 0.02 m).
Conclusion
: Review concepts of amplitude, frequency, period, displacement, and phase angle in simple harmonic motion.
📄
Full transcript