Coconote
AI notes
AI voice & video notes
Try for free
Power-Reducing and Half-Angle Formulas
Jul 18, 2024
🃏
Review flashcards
🗺️
Mindmap
Power-Reducing and Half-Angle Formulas
Sine Squared Half-Angle Formula
Power-Reducing Formula
: $ \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} $
Half-Angle Formula
: $ \sin^2(\frac{\theta}{2}) = \frac{1 - \cos(\theta)}{2} $
Taking the square root of both sides: $ \sin(\frac{\theta}{2}) = \pm\sqrt{\frac{1 - \cos(\theta)}{2}} $
Cosine Squared Half-Angle Formula
Power-Reducing Formula
: $ \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} $
Half-Angle Formula
: $ \cos(\frac{\theta}{2}) = \pm\sqrt{\frac{1 + \cos(\theta)}{2}} $
Tangent Half-Angle Formulas
Primary Formula
: $ \tan(\frac{\theta}{2}) = \frac{\sin(\theta/2)}{\cos(\theta/2)} $
Using Sine and Cosine Half-Angle Formulas
:
$ \tan(\frac{\theta}{2}) = \frac{\sqrt{1 - \cos(\theta)/2}}{\sqrt{1 + \cos(\theta)/2}} $
Simplifies to: $ \pm\sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}} $
Other forms:
$ = \frac{1 - \cos(\theta)}{\sin(\theta)} $
$ = \frac{\sin(\theta)}{1 + \cos(\theta)} $
Example Problems
Example 1: Evaluate Cosine of 15 Degrees
Formula: $ \cos(\frac{\theta}{2}) = \pm\sqrt{\frac{1 + \cos(\theta)}{2}} $
Given $ \theta/2 = 15^ ext{°} $, so $ \theta = 30^ ext{°} $
$ \cos(15^ ext{°}) = \pm\sqrt{\frac{1 + \cos(30^ ext{°})}{2}} $
Known: $ \cos(30^ ext{°}) = \frac{\sqrt{3}}{2} $
Simplification:
$ \cos(15^ ext{°}) = \sqrt{2 + \sqrt{3}/2} $
Result:
$ = \frac{\sqrt{2 + \sqrt{3}}}{2} $
Example 2: Evaluate Sine of 22.5 Degrees
Formula: $ \sin(\frac{\theta}{2}) = \pm\sqrt{\frac{1 - \cos(\theta)}{2}} $
Given $ \theta/2 = 22.5^ ext{°} $, so $ \theta = 45^ ext{°} $
$ \sin(22.5^ ext{°}) = \pm\sqrt{\frac{1 - \cos(45^ ext{°})}{2}} $
Known:
$ \cos(45^ ext{°}) = \frac{\sqrt{2}}{2} $
Simplification:
$ \sin(22.5^ ext{°}) = \sqrt{2 - \sqrt{2}/2} $
Result:
$ = \frac{\sqrt{2 - \sqrt{2}}}{2} $
Decimal approximation:
$ \sin(22.5^ ext{°}) \approx 0.3827 $
Example 3: Evaluate Tangent of 75 Degrees
Formula: $ \tan(\frac{\theta}{2}) = \frac{1 - \cos(\theta)}{\sin(\theta)} $
Given $ \theta/2 = 75^ ext{°} $, so $ \theta = 150^ ext{ °} $
$ \tan(75^ ext{°}) = \frac{1 - \cos(150^ ext{°})}{\sin(150^ ext{°})} $
Known:
$ \cos(150^ ext{°}) = -\frac{\sqrt{3}}{2} $
$ \sin(150^ ext{°}) = \frac{1}{2} $
Simplification:
$ \tan(75^ ext{°}) = \frac{1 + \sqrt{3}/2}{1/2} \times 2 $
Result:
$ = 2 + \sqrt{3} $
📄
Full transcript