Understanding Electrical Impedance Concepts

May 12, 2025

Electrical Impedance Lecture Notes

Overview of Electrical Impedance

  • Definition: A measure of opposition to a sinusoidal alternating current (AC).
  • Extends the concept of resistance to AC circuits by describing both relative amplitudes of voltage and current and their phases.
  • Direct Current (DC): No distinction between impedance and resistance in DC.
  • Symbol: Usually represented in complex form; coined by Oliver Heaviside in 1886.
  • SI Unit: Ohm; reciprocal is admittance.

Complex Impedance

  • Complex Quantity: Impedance is often represented as a complex quantity, capturing magnitude and phase.
  • Polar Form: Magnitude is the ratio of voltage amplitude to current amplitude; argument gives phase difference.
  • Cartesian Form: Real part is resistance; imaginary part is reactance.
  • Conversion: Necessary between polar and Cartesian forms during calculations.

Ohm's Law and Impedance

  • Impedance can be incorporated into Ohm's law for AC circuits.
  • Phase factor indicates that current lags voltage by a phase.
  • DC circuit analysis results (voltage division, Thevenin’s theorem, etc.) can be extended to AC by replacing resistance with impedance.

Complex Voltage and Current

  • Sinusoidal voltage and current represented as complex-valued functions of time.
  • Validity: Justified using Euler's formula.
  • Phasors: Represent complex amplitude (magnitude and phase) of sinusoidal functions. Simplifies computations involving sinusoids.

Device Impedance Examples

  • Resistor: Impedance is purely resistive.
  • Capacitor: Impedance is purely reactive; voltage leads current by -90 degrees.
  • Inductor: Impedance is purely reactive; voltage leads current by 90 degrees.

Resistance vs. Reactance

  • Resistance: Real part of impedance; no phase shift between voltage and current.
  • Reactance: Imaginary part; induces phase shift.
    • Capacitive Reactance: Inversely proportional to signal frequency.
    • Inductive Reactance: Proportional to signal frequency.

Combining Impedances

  • Series Combination: Current through each element is the same.
  • Parallel Combination: Voltage across each element is the same.
  • Impedances combined like resistances, using complex numbers.

Measuring Impedance

  • Can be calculated using Ohm's law by complex division of voltage and current.
  • Impulse Impedance Spectroscopy: Uses impulse response and FFT for measurement; compares well to other methodologies.

Additional Resources

  • External links and references to further explore the topic of electrical impedance.