Lecture Notes: Bond Amortization Using the Effective Interest Method
Introduction
- Presenter: Zack Vines
- Topic: Calculating and performing journal entries for bond amortization using the effective interest method.
- Objective: Understand bond amortization at a high level and learn the detailed calculations for journal entries.
Key Concepts
Bonds Overview
- Purpose: Companies issue bonds to receive immediate cash inflows by selling bonds, often at $1,000 par value, to consumers.
- Process: Consumers pay the bond amount and receive periodic coupon rate payments until bond maturity when the par value is returned.
- Benefits:
- Companies: Immediate cash inflow to expand or improve operations.
- Consumers: Earn from coupon payments plus the return of the original investment.
Bond Value
- Par Value: Stated value of the bond, typically does not change.
- Coupon Rate: Interest percentage paid to bondholders.
- Effective Rate: Market-based interest rate for similar bonds.
Premium vs Discount
- Premium:
- Occurs when the coupon rate > effective rate.
- Bond sold for more than par value.
- Example: 10% coupon vs 8% effective rate.
- Amortize the premium down to par value.
- Discount:
- Occurs when the coupon rate < effective rate.
- Bond sold for less than par value.
- Example: 8% coupon vs 10% effective rate.
- Amortize the discount up to par value.
Effective Interest Method
Example Scenario
- Bond Details:
- $100,000 a term bond with an 8% coupon rate.
- Sold on 1/1/2019, due 1/1/2024.
- Interest payable semi-annually (July 1st and January 1st).
- Effective interest rate: 10%.
- Sold at a discount for $92,278.
Calculation Steps
- Coupon Payment:
- Calculated as par value ($100,000) x coupon rate (8%) x fraction of year (6/12).
- Result: $4,000 per period.
- Interest Expense:
- Calculated using the current carrying value x effective rate x fraction of year.
- Example for first period: $92,278 (initial carrying value) x 10% x 6/12 = $4,614.
- Amortization:
- Difference between interest expense and coupon payment.
- Add amortization to carrying value for discount; subtract for premium.
- Example: Add $614 (amortization) to $92,278, resulting in a new carrying value of $92,892 for the next period.
Completing Amortization Schedule
- Process: Repeat the above steps for each period until the bond is amortized to par value.
- Outcome: Carrying value gradually increases each period in a discount scenario.
Journal Entries
Initial Sale
- Date: 1/1/2019
- Entry:
- Debit Cash $92,278.
- Debit Discount on Bonds Payable $7,722.
- Credit Bonds Payable $100,000.
Interest Period (e.g., 7/1/2019)
- Entry:
- Debit Interest Expense $4,614.
- Credit Discount on Bonds Payable $614.
- Credit Cash $4,000.
Conclusion
- Summary: The effective interest method involves repetitive steps to amortize bonds to par value, accounting for premium or discount based on the interest rate relationship.
- Advice: Practice and repetition can simplify understanding of seemingly complex charts and entries.
Questions
- Encouragement to leave any questions in comments.
This summary captures the essence of the lecture and the methodology to perform effective interest method calculations and journal entries for bond amortization.