📐

Understanding the Law of Sines

May 28, 2025

Lecture on the Law of Sines

Introduction to the Law of Sines

  • The Law of Sines is used to find missing angles or sides in a triangle.
  • Formula: [ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} ]
    • a, b, c: side lengths opposite to angles A, B, C respectively.
    • A, B, C: angles of the triangle.
  • Note: The sum of angles in a triangle is always 180 degrees.

Example 1: Solving a Triangle with Given Angles and Side

  • Given:
    • Angle A = 60 degrees
    • Angle B = 70 degrees
    • Side a = 8
  • Find:
    • Angle C, Side b, Side c

Steps to Solve:

  1. Find Angle C:

    • Sum of angles: ( A + B + C = 180 )
    • ( C = 180 - 60 - 70 = 50 ) degrees
  2. Find Side b Using Law of Sines:

    • Formula: ( \frac{b}{\sin B} = \frac{a}{\sin A} )
    • Substitute and solve: ( b = \frac{8 \cdot \sin 70}{\sin 60} \approx 8.68 )
  3. Find Side c:

    • Formula: ( \frac{c}{\sin C} = \frac{a}{\sin A} )
    • Substitute and solve: ( c = \frac{8 \cdot \sin 50}{\sin 60} \approx 7.07 )

Example 2: Side-Side-Angle (SSA) Triangle

  • Given:
    • Angle A = 42 degrees
    • Side a = 10
    • Side b = 9

Steps:

  1. Find Angle B:

    • Use Law of Sines: ( \frac{b}{\sin B} = \frac{a}{\sin A} )
    • Solve for B: ( \sin B = \frac{9 \sin 42}{10} = 0.602 )
    • ( B = \text{arc sine}(0.602) \approx 37 ) degrees
  2. Check for Second Solution:

    • Calculate supplementary angle: ( 180 - 37 = 143 )
    • Validate angle: ( 42 + 143 > 180 ), only one triangle possible.
  3. Find Angle C:

    • ( C = 180 - 42 - 37 = 101 ) degrees
  4. Find Side c:

    • Formula: ( \frac{c}{\sin C} = \frac{a}{\sin A} )
    • Solve for c: ( c = \frac{10 \sin 101}{\sin 42} \approx 14.67 )

Example 3: SSA Triangle with No Solution

  • Given:
    • Angle A = 75 degrees
    • Side a = 8
    • Side c = 9
  • Calculation:
    • ( c \sin A = a \sin C ) leads to invalid sine range. No solution.

Example 4: Two Possible Triangles

  • Given:
    • Angle A = 30 degrees
    • Side a = 7
    • Side b = 8

Steps:

  1. Find Angle B:

    • Solve for B: ( B = \text{arc sine}(\frac{4}{7}) \approx 34.9 ) degrees
  2. Check for Second Solution:

    • Calculate supplementary angle: ( 180 - 34.9 = 145.1 )
    • Validate angles: ( 30 + 145.1 < 180 ), two triangles possible.
  3. Calculate Angle C for both triangles:

    • For first triangle: ( C = 115.1 ) degrees
    • For second triangle: ( C = 4.9 ) degrees
  4. Find Side c for Both Triangles:

    • First Triangle: ( c \approx 12.7 )
    • Second Triangle: ( c \approx 1.2 )

Key Takeaways:

  • Always check if two solutions are possible in SSA scenarios.
  • When angles are supplementary, ensure the sum of angles is less than 180 to validate two triangles.
  • Cross-multiplying and using inverse trigonometric functions are crucial in solving for unknowns.