Convergence Tests for Series Explained

Feb 25, 2025

Convergence of Series: Ratio and Root Tests

Introduction

  • Purpose: Determine if a series converges using the ratio or root test.
  • Tests to Use:
    • Ratio Test: Useful when terms have factorials or when the exponent involves n.
    • Root Test: Better when terms contain powers of n.

Example 1: Series ( \sum_{n=1}^{\infty} \frac{n}{3^n} )

  • Initial comparison with geometric series ( \sum \frac{1}{3^n} ) failed as it converges.
  • Ratio Test:
    • Calculate ( \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| ).
    • Evaluate: ( \frac{n+1}{3^{n+1}} \cdot \frac{3^n}{n} ).
    • Simplify: Limit simplifies to ( \frac{1}{3} ), which is less than 1.
  • Conclusion: Series converges by ratio test.

Example 2: Series ( \sum_{n=1}^{\infty} \frac{2^n}{n!} )

  • Ratio Test:
    • Use: ( \lim_{n \to \infty} \frac{a_{n+1}}{a_n} ).
    • Evaluate: ( \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} ).
    • Simplify: Limit goes to 0.
  • Conclusion: Series converges by ratio test.

Example 3: Series ( \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{3n}} )

  • Root Test:
    • Use: ( \lim_{n \to \infty} \sqrt[n]{a_n} ).
    • Evaluate: ( \left( \frac{(2n+1)^n}{n^{3n}} \right)^{1/n} ).
    • Simplify: Limit reduces to 0.
  • Conclusion: Series converges by root test.

Example 4: Series ( \sum_{n=1}^{\infty} \frac{(-4)^n}{3^{n^2}} )

  • Root Test:
    • Absolute value simplifies the alternating component.
    • Evaluate: ( \left( \frac{4^n}{3^{n^2}} \right)^{1/n} ).
    • Simplify: Limit goes to 0.
  • Conclusion: Series converges by root test.

Example 5: Series ( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n!}} )

  • Ratio Test:
    • Use: ( \frac{1}{\sqrt{(n+1)!}} \cdot \sqrt{n!} ).
    • Simplify: Limit goes to 0.
  • Conclusion: Series converges by ratio test.

Example 6: Series ( \sum_{n=1}^{\infty} \frac{3^n}{n \cdot 2^n} )

  • Ratio Test:
    • Evaluate: Limit results in ( \frac{3}{2} ).
  • Conclusion: Series diverges because result is greater than 1.

Example 7: Series ( \sum_{n=1}^{\infty} \frac{n!}{n^n} )

  • Ratio Test:
    • Use: ( \frac{n!}{n^n} ) and simplify.
    • Consider limit transformations and tricks (e.g., the exponential limit trick).
    • Simplify: Results in ( \frac{1}{e} ).
  • Conclusion: Series converges by ratio test.

Example 8: Series ( \sum_{n=1}^{\infty} \left( \frac{1+2n}{3+4n} \right)^n )

  • Root Test:
    • Use: Simplifies to ( \frac{1+2n}{3+4n} ).
    • Simplify: Limit goes to ( \frac{1}{2} ).
  • Conclusion: Series converges by root test.

Conclusion

  • Use the ratio test when dealing with factorials or exponential expressions in n.
  • Use the root test when dealing with powers of terms.
  • Always verify the limit conditions to determine convergence or divergence.