Coconote
AI notes
AI voice & video notes
Try for free
✖️
Multiplying and Dividing Monomials Guide
May 19, 2025
Lecture on Multiplying and Dividing Monomials and Powers
Multiplying Monomials
Basic Rule:
When multiplying two monomials with the same base, add the exponents.
Example: (4^2 \times 4^3 = 4^{2+3} = 4^5)
Example: (3^7 \times 3^4 = 3^{7+4} = 3^{11})
Example: (x^2 \times x^3 = x^{2+3} = x^5)
Example: (b^6 \times b^8 = b^{6+8} = b^{14})
Dividing Powers
Basic Rule:
When dividing two numbers with the same base, subtract the exponents.
Example: (\frac{7^8}{7^3} = 7^{8-3} = 7^5)
Example: (\frac{2^6}{2^3} = 2^{6-3} = 2^3 = 8)
Negative Exponents:
A negative exponent indicates reciprocal.
Example: (\frac{x^3}{x^7} = x^{3-7} = x^{-4} = \frac{1}{x^4})
Multiplying Monomials with Different Constants and Variables
Multiply constants first, then apply rules for exponents.
Example: (3x^2 \times 5x^4 = 15x^{2+4} = 15x^6)
Example: (6x^2y^3 \times 4x^3y^5 = 24x^{2+3}y^{3+5} = 24x^5y^8)
Complex Examples
Multiplication and Division: Combined Problems
Example: (\frac{y^3 \times y^6}{y^4} = y^{3+6-4} = y^5)
Example: (\frac{a^4 \times a^5}{a^3} = a^{4+5-3} = a^{6})
Example: (\frac{12x^4y^8}{4x^3y^4} = 3x^{4-3}y^{8-4} = 3xy^4)
Example: (\frac{35x^7y^9}{63x^4y^5} = \frac{5}{9}x^{7-4}y^{9-5} = \frac{5x^3y^4}{9})
Special Cases
Different Bases, Same Exponent:
Multiply the bases.
Example: (2^5 \times 4^5 = (2 \times 4)^5 = 8^5)
Converting Bases or Exponents
Example: (2^5 \times 4^3 = 2^5 \times (2^2)^3 = 2^5 \times 2^6 = 2^{11})
Algebra Course Overview on Udemy
Course Content Includes:
Basic arithmetic, fractions, solving linear equations, order of operations
Graphing linear equations, inequalities, absolute value expressions
Polynomials, factoring, systems of equations, quadratic equations
Rational and radical expressions, complex numbers, exponential functions, logarithms
Functions, conic sections, arithmetic and geometric sequences
Features:
Multiple choice quizzes, video quizzes, detailed explanations
Additional Information
To find the course, search "algebra" on Udemy, look for the black background image course.
Course is suitable for enhancing understanding of multiple algebraic concepts.
📄
Full transcript